Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

Influence of multiplicity of infection and protein stability on retroviral vector-mediated gene expression in hematopoietic cells

Abstract

Using retroviral vectors encoding enhanced green fluorescent protein (egfp), we addressed to what extent expression of retroviral transgenes in hematopoietic cells depends on the multiplicity of infection (moi) and on the half-life of the encoded protein. we show that an elevation of the moi not only elevates the frequency of transduced cells, but also increases transgene expression levels and reduces interanimal variability in vivo (hematopoietic cells of c57bl/6j mice analyzed 13 weeks after transplantation). this suggests that the moi has to be carefully controlled and should be adapted as desired for clinical studies when evaluating vector performance in preclinical models. the impact of protein stability is demonstrated by comparing vectors expressing egfp or a destabilized variant with a c-terminal pest-sequence, d2egfp. the loss of expression with d2egfp was more pronounced in terminally differentiated cells of the peripheral blood (>30 fold) than in progenitor cells (five- to 10-fold), indicating a stronger transcription of the retroviral promoter in progenitor cells and a predominant role of protein inheritance over de novo synthesis of transgenic protein in mature blood cells. This analysis reveals an important and differentiation-dependent contribution of protein half-life to the expression of retroviral vectors in hematopoietic cells, establishes d2EGFP as a more accurate reporter for determination of vector transcription, and also suggests that preclinical data obtained under conditions of high transduction rates or with vectors expressing stable reporter proteins require careful interpretation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Cheng L, Fu J, Tsukamoto A, Hawley RG . Use of green fluorescent protein variants to monitor gene transfer and expression in mammalian cells Nat Biotechnol 1996 14: 606–609

    Article  CAS  PubMed  Google Scholar 

  2. Persons DA et al. Use of the green fluorescent protein as a marker to identify and track genetically modified hematopoietic cells Nat Med 1998 4: 1201–1205

    Article  CAS  PubMed  Google Scholar 

  3. van Hennik PB et al. Highly efficient transduction of the green fluorescent protein gene in human umbilical cord blood stem cells capable of cobblestone formation in long-term cultures and multilineage engraftment of immunodeficient mice Blood 1998 92: 4013–4022

    CAS  PubMed  Google Scholar 

  4. Halene S et al. Improved expression in hematopoietic and lymphoid cells in mice after transplantation of bone marrow transduced with a modified retroviral vector Blood 1999 94: 3337–3349

    Google Scholar 

  5. Dunbar CE, Young NS . Gene marking and gene therapy directed at primary hematopoietic cells Curr Opin Hematol 1996 3: 430–437

    Article  CAS  PubMed  Google Scholar 

  6. Karlsson S . Treatment of genetic defects in hematopoietic cell function by gene transfer Blood 1991 78: 2481–2492

    CAS  PubMed  Google Scholar 

  7. Baum C et al. Gene transfer and transgene expression in hematopoietic cells. In: Strauss M, Barranger JA (eds). Concepts in Gene Therapy DeGruyter: Berlin 1997; pp 233–266

    Google Scholar 

  8. Williams DA, Lemischka IR, Nathan DG, Mulligan RC . Introduction of new genetic material into pluripotent haematopoietic stem cells of the mouse Nature 1984 310: 476–480

    Article  CAS  PubMed  Google Scholar 

  9. Riviere I, Brose K, Mulligan RC . Effects of retroviral vector design on expression of human adenosine deaminase in murine bone marrow transplant recipients engrafted with genetically modified cells Proc Natl Acad Sci USA 1995 92: 6733–6737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Bunting KD et al. Transduction of murine bone marrow cells with an MDR1 vector enables ex vivo stem cell expansion, but these expanded grafts cause a myeloproliferative syndrome in transplanted mice Blood 1998 92: 2269–2279

    CAS  PubMed  Google Scholar 

  11. Austin TW et al. Long-term multilineage expression in peripheral blood from a Moloney murine leukemia virus vector after serial transplantation of transduced bone marrow cells Blood 2000 95: 829–836

    CAS  PubMed  Google Scholar 

  12. Arai T, Takada M, Ui M, Iba H . Dose-dependent transduction of vesicular stomatitis virus G protein-pseudotyped retrovirus vector into human solid tumour cell lines and murine fibroblasts Virology 1999 260: 109–115

    Article  CAS  PubMed  Google Scholar 

  13. Li X et al. Generation of destabilized green fluorescent protein as a transcription reporter J Biol Chem 1998 273: 34970–34975

    Article  CAS  PubMed  Google Scholar 

  14. Fehse B et al. CD34 splice variant: an attractive marker for selection of gene-modified cells Mol Ther 2000 1: 448–456

    Article  CAS  PubMed  Google Scholar 

  15. Emi N, Friedmann T, Yee JK . Pseudotype formation of murine leukemia virus with the G protein of vesicular stomatitis virus J Virol 1991 65: 1202–1207

    CAS  PubMed  PubMed Central  Google Scholar 

  16. von Laer D et al. Entry of amphotropic and 10A1 pseudotyped murine retroviruses is restricted in hematopoietic stem cell lines J Virol 1998 72: 1424–1430

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Barrette S et al. Superior transduction of mouse hematopoietic stem cells with 10A1 and VSV-G pseudotyped retrovirus vectors Mol Ther 2000 1: 330–338

    Article  CAS  PubMed  Google Scholar 

  18. Hildinger M, Abel KL, Ostertag W, Baum C . Design of 5′ untranslated sequences in retroviral vectors developed for medical use J Virol 1999 73: 4083–4089

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Abonour R et al. Efficient retrovirus-mediated transfer of the multidrug resistance 1 gene into autologous human long-term repopulating hematopoietic stem cells Nat Med 2000 6: 652–658

    Article  CAS  PubMed  Google Scholar 

  20. Williams DA, Hsieh K, DeSilva A, Mulligan RC . Protection of bone marrow transplant recipients from lethal doses of methotrexate by the generation of methotrexate-resistant bone marrow J Exp Med 1987 166: 210–218

    Article  CAS  PubMed  Google Scholar 

  21. Maze R, Hanenberg H, Williams DA . Establishing chemoresistance in hematopoietic progenitor cells Mol Med Today 1997 3: 350–358

    Article  CAS  PubMed  Google Scholar 

  22. Morgan RA . Genetic strategies to inhibit HIV Mol Med Today 1999 5: 454–458

    Article  CAS  PubMed  Google Scholar 

  23. Williams DA, Smith FO . Progress in the use of gene transfer methods to treat genetic blood diseases Hum Gene Ther 2000 11: 2059–2066

    Article  CAS  PubMed  Google Scholar 

  24. Kiem HP et al. Improved gene transfer into baboon marrow repopulating cells using recombinant human fibronectin fragment CH-296 in combination with interleukin-6, stem cell factor, FLT-3 ligand, and megakaryocyte growth and development factor Blood 1998 92: 1878–1886

    CAS  PubMed  Google Scholar 

  25. Conneally E, Eaves CJ, Humphries RK . Efficient retroviral-mediated gene transfer to human cord blood stem cells with in vivo repopulating potential Blood 1998 91: 3487–3493

    CAS  PubMed  Google Scholar 

  26. Schilz AJ et al. High efficiency gene transfer to human hematopoietic SCID-repopulating cells under serum-free conditions Blood 1998 92: 3163–3171

    CAS  PubMed  Google Scholar 

  27. Schiedlmeier B et al. Quantitative assessment of retroviral transfer of the human multidrug resistance 1 gene to human mobilized peripheral blood progenitor cells engrafted in nonobese diabetic/severe combined immunodeficient mice Blood 2000 95: 1237–1248

    CAS  PubMed  Google Scholar 

  28. Demaison C et al. A defined window for efficient gene marking of severe combined immunodeficient-repopulating cells using a gibbon ape leukemia virus-pseudotyped retroviral vector Hum Gene Ther 2000 11: 91–100

    Article  CAS  PubMed  Google Scholar 

  29. Hanenberg H et al. Colocalization of retrovirus and target cells on specific fibronectin fragments increases genetic transduction of mammalian cells Nat Med 1996 2: 876–882

    Article  CAS  PubMed  Google Scholar 

  30. Hagani AB et al. Activation conditions determine susceptibility of murine primary T-lymphocytes to retroviral infection J Gene Med 1999 1: 341–351

    Article  CAS  PubMed  Google Scholar 

  31. Wognum AW et al. Stimulation of mouse bone marrow cells with kit ligand, FLT3 ligand, and thrombopoietin leads to efficient retrovirus-mediated gene transfer to stem cells, whereas interleukin 3 and interleukin 11 reduce transduction of short- and long-term repopulating cells Hum Gene Ther 2000 11: 2129–2141

    Article  CAS  PubMed  Google Scholar 

  32. Miyoshi H et al. Transduction of human CD34+ cells that mediate long-term engraftment of NOD/SCID mice by HIV vectors Science 1999 283: 682–686

    Article  CAS  PubMed  Google Scholar 

  33. Case SS et al. Stable transduction of quiescent CD34(+)CD38(-) human hematopoietic cells by HIV-1-based lentiviral vectors Proc Natl Acad Sci USA 1999 96: 2988–2993

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ando K, Ajchenbaum-Cymbalista F, Griffin JD . Regulation of G1/S transition by cyclins D2 and D3 in hematopoietic cells Proc Natl Acad Sci USA 1993 90: 9571–9575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Baum C et al. Novel retroviral vectors for efficient expression of the multidrug-resistance (mdr-1) gene in early hemopoietic cells J Virol 1995 69: 7541–7547

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Zufferey R, Donello JE, Trono D, Hope TJ . Woodchuck hepatitis virus posttranscriptional regulatory element enhances expression of transgenes delivered by retroviral vectors J Virol 1999 73: 2886–2892

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Agarwal M et al. Scaffold attachment region-mediated enhancement of retroviral vector expression in primary T cells J Virol 1998 72: 3720–3728

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Baum C et al. The potent enhancer activity of the polycythemic strain of spleen focus-forming virus in hematopoietic cells is governed by a binding site for Sp1 in the upstream control region and by a unique enhancer core motif, creating an exclusive target for PEBP/CBF J Virol 1994 71: 6323–6331

    Google Scholar 

  39. Kinsella TM, Nolan GP . Episomal vectors rapidly and stably produce high-titer recombinant retrovirus Hum Gene Ther 1996 7: 1405–1413

    Article  CAS  PubMed  Google Scholar 

  40. Grande A et al. Transcriptional targeting of retroviral vectors to the erythroblastic progeny of transduced hematopoietic stem cells Blood 1999 93: 3276–3285

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Cordula Grüttner for excellent technical assistance. This work contains parts of the doctoral thesis of Anke Wahlers (University of Hamburg, Faculty of Biology). This work was supported by the Deutsche Krebshilfe (10–1456-Ba2), by the Erich and Gertrud Roggenbuck-Stiftung and by the Hamburger Stiftung zur Foerderung der Krebsbekämpfung. The Heinrich-Pette-Institute is financially supported by the Freie und Hansestadt Hamburg and by the Bundesministerium für Gesundheit.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wahlers, A., Schwieger, M., Li, Z. et al. Influence of multiplicity of infection and protein stability on retroviral vector-mediated gene expression in hematopoietic cells. Gene Ther 8, 477–486 (2001). https://doi.org/10.1038/sj.gt.3301426

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3301426

Keywords

This article is cited by

Search

Quick links