Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Mannitol-facilitated CNS entry of rAAV2 vector significantly delayed the neurological disease progression in MPS IIIB mice

Abstract

The presence of the blood–brain barrier (BBB) presents the most critical challenge in therapeutic development for mucopolysaccharidosis (MPS) IIIB, a lysosomal storage disease with severe neurological manifestation, because of α-N-acetylglucosaminidase (NaGlu) deficiency. Earlier, we showed a global central nervous system (CNS) transduction in mice by mannitol-facilitated entry of intravenous (IV)-delivered recombinant adeno-associated viral serotype 2 (rAAV2) vector. In this study, we optimized the approach and showed that the maximal transduction in the CNS occurred when the rAAV2 vector was IV injected at 8 min after mannitol administration, and was approximately 10-fold more efficient than IV delivery of the vector at 5 or 10 min after mannitol infusion. Using this optimal (8 min) regimen, a single IV infusion of rAAV2-CMV-hNaGlu vector is therapeutically beneficial for treating the CNS disease of MPS IIIB in adult mice, with significantly extended survival, improved behavioral performance, and reduction of brain lysosomal storage pathology. The therapeutic benefit correlated with maximal delivery to the CNS, but not peripheral tissues. This milestone data shows the first effective gene delivery across the BBB to treat CNS disease. The critical timing of vector delivery and mannitol infusion highlights the important contribution of this pretreatment to successful intervention, and the long history of safe use of mannitol in patients bodes well for its application in CNS gene therapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Neufeld EF, Muenzer J . The mucopolysaccharidoses. In: Scriver CR, Beaudet AL, Sly WS, Valle D (eds). The Metabolic and Molecular Basis of Inherited Disease, 8th edn. McGraw-Hill: New York, St Louis, San Francisco, 2001, pp 3421–3452.

    Google Scholar 

  2. Li HH, Yu WH, Rozengurt N, Zhao HZ, Lyons KM, Anagnostaras S et al. Mouse model of Sanfilippo syndrome type B produced by targeted disruption of the gene encoding alpha-N-acetylglucosaminidase. Proc Natl Acad Sci USA 1999; 96: 14505–14510.

    Article  CAS  Google Scholar 

  3. McGlynn R, Dobrenis K, Walkley SU . Differential subcellular localization of cholesterol, gangliosides, and glycosaminoglycans in murine models of mucopolysaccharide storage disorders. J Comp Neurol 2004; 480: 415–426.

    Article  CAS  Google Scholar 

  4. Villani GR, Gargiulo N, Faraonio R, Castaldo S, Gonzalez YRE, Di Natale P . Cytokines, neurotrophins, and oxidative stress in brain disease from mucopolysaccharidosis IIIB. J Neurosci Res 2007; 85: 612–622.

    Article  CAS  Google Scholar 

  5. Dirosario J, Divers E, Wang C, Etter J, Charrier A, Jukkola P et al. Innate and adaptive immune activation in the brain of MPS IIIB mouse model. J Neurosci Res 2009; 87: 978–990.

    Article  CAS  Google Scholar 

  6. Ohmi K, Greenberg DS, Rajavel KS, Ryazantsev S, Li HH, Neufeld EF . Activated microglia in cortex of mouse models of mucopolysaccharidoses I and IIIB. Proc Natl Acad Sci USA 2003; 100: 1902–1907.

    Article  CAS  Google Scholar 

  7. Walkley SU . Pathogenic mechanisms in lysosomal disease: a reappraisal of the role of the lysosome. Acta Paediatr Suppl 2007; 96: 26–32.

    Article  Google Scholar 

  8. Li HH, Zhao HZ, Neufeld EF, Cai Y, Gomez-Pinilla F . Attenuated plasticity in neurons and astrocytes in the mouse model of Sanfilippo syndrome type B. J Neurosci Res 2002; 69: 30–38.

    Article  CAS  Google Scholar 

  9. Muenzer J, Fisher A . Advances in the treatment of mucopolysaccharidosis type I. N Engl J Med 2004; 350: 1932–1934.

    Article  CAS  Google Scholar 

  10. Rohrbach M, Clarke JT . Treatment of lysosomal storage disorders: progress with enzyme replacement therapy. Drugs 2007; 67: 2697–2716.

    Article  CAS  Google Scholar 

  11. Misra A, Ganesh S, Shahiwala A, Shah SP . Drug delivery to the central nervous system: a review. J Pharm Pharm Sci 2003; 6: 252–273.

    CAS  Google Scholar 

  12. Pardridge WM . Molecular biology of the blood-brain barrier. Mol Biotechnol 2005; 30: 57–70.

    Article  CAS  Google Scholar 

  13. Rapoport SI . Osmotic opening of the blood-brain barrier: principles, mechanism, and therapeutic applications. Cell Mol Neurobiol 2000; 20: 217–230.

    Article  CAS  Google Scholar 

  14. Chen Y, Dalwadi G, Benson HA . Drug delivery across the blood-brain barrier. Curr Drug Deliv 2004; 1: 361–376.

    Article  CAS  Google Scholar 

  15. Doolittle ND, Miner ME, Hall WA, Siegal T, Jerome E, Osztie E et al. Safety and efficacy of a multicenter study using intraarterial chemotherapy in conjunction with osmotic opening of the blood-brain barrier for the treatment of patients with malignant brain tumors. Cancer 2000; 88: 637–647.

    Article  CAS  Google Scholar 

  16. Gaillard PJ, Visser CC, de Boer AG . Targeted delivery across the blood-brain barrier. Expert Opin Drug Deliv 2005; 2: 299–309.

    Article  CAS  Google Scholar 

  17. Pardridge WM . Molecular Trojan horses for blood-brain barrier drug delivery. Curr Opin Pharmacol 2006; 6: 494–500.

    Article  CAS  Google Scholar 

  18. Barranger JA, Rapoport SI, Fredericks WR, Pentchev PG, MacDermot KD, Steusing JK et al. Modification of the blood-brain barrier: increased concentration and fate of enzymes entering the brain. Proc Natl Acad Sci USA 1979; 76: 481–485.

    Article  CAS  Google Scholar 

  19. Burger C, Nguyen FN, Deng J, Mandel RJ . Systemic mannitol-induced hyperosmolality amplifies rAAV2-mediated striatal transduction to a greater extent than local co-infusion. Mol Ther 2005; 11: 327–331.

    Article  CAS  PubMed  Google Scholar 

  20. Doran SE, Ren XD, Betz AL, Pagel MA, Neuwelt EA, Roessler BJ et al. Gene expression from recombinant viral vectors in the central nervous system after blood-brain barrier disruption. Neurosurgery 1995; 36: 965–970.

    Article  CAS  Google Scholar 

  21. Fu H, Muenzer J, Samulski RJ, Breese G, Sifford J, Zeng X et al. Self-complementary adeno-associated virus serotype 2 vector: global distribution and broad dispersion of AAV-mediated transgene expression in mouse brain. Mol Ther 2003; 8: 911–917.

    Article  CAS  Google Scholar 

  22. Neuwelt EA, Barnett PA, Hellstrom KE, Hellstrom I, McCormick CI, Ramsey FL . Effect of blood-brain barrier disruption on intact and fragmented monoclonal antibody localization in intracerebral lung carcinoma xenografts. J Nucl Med 1994; 35: 1831–1841.

    CAS  Google Scholar 

  23. Zlokovic BV, Apuzzo ML . Cellular and molecular neurosurgery: pathways from concept to reality—part II: vector systems and delivery methodologies for gene therapy of the central nervous system. Neurosurgery 1997; 40: 805–812; discussion 812–803.

    Article  CAS  Google Scholar 

  24. Ikeda MF, Bhattacharjee AKF, Kondoh TF, Nagashima TF, Tamaki N . Synergistic effect of cold mannitol and Na(+)/Ca(2+) exchange blocker on blood-brain barrier opening. Biochem Biophys Res Commun 2002; 291: 669–674.

    Article  CAS  Google Scholar 

  25. Fratantoni JC, Hall CW, Neufeld EF . Hurler and Hunter syndromes: mutual correction of the defect in cultured fibroblasts. Science (New York, NY) 1968; 162: 570–572.

    Article  CAS  Google Scholar 

  26. Leinekugel P, Michel S, Conzelmann E, Sandhoff K . Quantitative correlation between the residual activity of beta-hexosaminidase A and arylsulfatase A and the severity of the resulting lysosomal storage disease. Hum Genet 1992; 88: 513–523.

    Article  CAS  Google Scholar 

  27. Abkowitz JL, Persik MT, Catlin SN, Guttorp P . Simulation of hematopoiesis: implications for the gene therapy of lysosomal enzyme disorders. Acta Haematol 1996; 95: 213–217.

    Article  CAS  Google Scholar 

  28. Berns KI, Linden RM . The cryptic life style of adeno-associated virus. Bioessays 1995; 17: 237–245.

    Article  CAS  PubMed  Google Scholar 

  29. Kaplitt MG, Leone P, Samulski RJ, Xiao X, Pfaff DW, O’Malley KL et al. Long-term gene expression and phenotypic correction using adeno-associated virus vectors in the mammalian brain. Nat Genet 1994; 8: 148–154.

    Article  CAS  Google Scholar 

  30. McCown TJ, Xiao X, Li J, Breese GR, Samulski RJ . Differential and persistent expression patterns of CNS gene transfer by an adeno-associated virus (AAV) vector. Brain Res 1996; 713: 99–107.

    Article  CAS  PubMed  Google Scholar 

  31. Sly WS, Vogler C . Brain-directed gene therapy for lysosomal storage disease: going well beyond the blood- brain barrier. Proc Natl Acad Sci USA 2002; 99: 5760–5762.

    Article  CAS  Google Scholar 

  32. Fu H, Samulski RJ, McCown TJ, Picornell YJ, Fletcher D, Muenzer J . Neurological correction of lysosomal storage in a mucopolysaccharidosis IIIB mouse model by adeno-associated virus-mediated gene delivery. Mol Ther 2002; 5: 42–49.

    Article  CAS  PubMed  Google Scholar 

  33. Desmaris N, Verot L, Puech JP, Caillaud C, Vanier MT, Heard JM . Prevention of neuropathology in the mouse model of Hurler syndrome. Ann Neurol 2004; 56: 68–76.

    Article  CAS  Google Scholar 

  34. Fu H, Kang L, Jennings JS, Moy SS, Perez A, Dirosario J et al. Significantly increased lifespan and improved behavioral performances by rAAV gene delivery in adult mucopolysaccharidosis IIIB mice. Gene Therapy 2007; 14: 1065–1077.

    Article  CAS  Google Scholar 

  35. Liu G, Martins I, Wemmie JA, Chiorini JA, Davidson BL . Functional correction of CNS phenotypes in a lysosomal storage disease model using adeno-associated virus type 4 vectors. J Neurosci 2005; 25: 9321–9327.

    Article  CAS  PubMed  Google Scholar 

  36. Heuer GG, Passini MA, Jiang K, Parente MK, Lee VM, Trojanowski JQ et al. Selective neurodegeneration in murine mucopolysaccharidosis VII is progressive and reversible. Ann Neurol 2002; 52: 762–770.

    Article  Google Scholar 

  37. Cressant A, Desmaris N, Verot L, Brejot T, Froissart R, Vanier MT et al. Improved behavior and neuropathology in the mouse model of Sanfilippo type IIIB disease after adeno-associated virus-mediated gene transfer in the striatum. J Neurosci 2004; 24: 10229–10239.

    Article  CAS  Google Scholar 

  38. Kaplitt MG, Feigin A, Tang C, Fitzsimons HL, Mattis P, Lawlor PA et al. Safety and tolerability of gene therapy with an adeno-associated virus (AAV) borne GAD gene for Parkinson's disease: an open label, phase I trial. Lancet 2007; 369: 2097–2105.

    Article  CAS  PubMed  Google Scholar 

  39. Worgall S, Sondhi D, Hackett NR, Kosofsky B, Kekatpure MV, Neyzi N et al. Treatment of late infantile neuronal ceroid lipofuscinosis by CNS administration of a serotype 2 adeno-associated virus expressing CLN2 cDNA. Hum Gene Ther 2008; 19: 463–474.

    Article  CAS  PubMed  Google Scholar 

  40. Sands MS, Barker JE . Percutaneous intravenous injection in neonatal mice. Lab Anim Sci 1999; 49: 328–330.

    CAS  PubMed  Google Scholar 

  41. Hartung SD, Frandsen JL, Pan D, Koniar BL, Graupman P, Gunther R et al. Correction of metabolic, craniofacial, and neurologic abnormalities in MPS I mice treated at birth with adeno-associated virus vector transducing the human alpha-L-iduronidase gene. Mol Ther 2004; 9: 866–875.

    Article  CAS  Google Scholar 

  42. Kobayashi H, Carbonaro D, Pepper K, Petersen D, Ge S, Jackson H et al. Neonatal gene therapy of MPS I mice by intravenous injection of a lentiviral vector. Mol Ther 2005; 11: 776–789.

    Article  CAS  PubMed  Google Scholar 

  43. Mango RL, Xu L, Sands MS, Vogler C, Seiler G, Schwarz T et al. Neonatal retroviral vector-mediated hepatic gene therapy reduces bone, joint, and cartilage disease in mucopolysaccharidosis VII mice and dogs. Mol Genet Metab 2004; 82: 4–19.

    Article  CAS  Google Scholar 

  44. McCarty DM, Monahan PE, Samulski RJ . Self-complementary recombinant adeno-associated virus (scAAV) vectors promote efficient transduction independently of DNA synthesis. Gene Therapy 2001; 8: 1248–1254.

    Article  CAS  PubMed  Google Scholar 

  45. Ryazantsev S, Yu WH, Zhao HZ, Neufeld EF, Ohmi K . Lysosomal accumulation of SCMAS (subunit c of mitochondrial ATP synthase) in neurons of the mouse model of mucopolysaccharidosis III B. Mol Genet Metab 2007; 90: 393–401.

    Article  CAS  Google Scholar 

  46. Diringer MN, Zazulia AR . Osmotic therapy: fact and fiction. Neurocrit Care 2004; 1: 219–233.

    Article  CAS  Google Scholar 

  47. Shapiro WR, Green SB, Burger PC, Selker RG, VanGilder JC, Robertson JT et al. A randomized comparison of intra-arterial versus intravenous BCNU, with or without intravenous 5-fluorouracil, for newly diagnosed patients with malignant glioma. J Neurosurg 1992; 76: 772–781.

    Article  CAS  Google Scholar 

  48. Cosolo WC, Martinello P, Louis WJ, Christophidis N . Blood-brain barrier disruption using mannitol: time course and electron microscopy studies. Am J Physiol 1989; 256: R443–R447.

    CAS  Google Scholar 

  49. Daly TM, Ohlemiller KK, Roberts MS, Vogler CA, Sands MS . Prevention of systemic clinical disease in MPS VII mice following AAV-mediated neonatal gene transfer. Gene Therapy 2001; 8: 1291–1298.

    Article  CAS  Google Scholar 

  50. Daly TM, Vogler C, Levy B, Haskins ME, Sands MS . Neonatal gene transfer leads to widespread correction of pathology in a murine model of lysosomal storage disease. Proc Natl Acad Sci USA 1999; 96: 2296–2300.

    Article  CAS  Google Scholar 

  51. Gliddon BL, Hopwood JJ . Enzyme-replacement therapy from birth delays the development of behavior and learning problems in mucopolysaccharidosis type IIIA mice. Pediatr Res 2004; 56: 65–72.

    Article  CAS  Google Scholar 

  52. Kakkis ED . Enzyme replacement therapy for the mucopolysaccharide storage disorders. Expert Opin Investig Drugs 2002; 11: 675–685.

    Article  CAS  Google Scholar 

  53. Muenzer J, Lamsa JC, Garcia A, Dacosta J, Garcia J, Treco DA . Enzyme replacement therapy in mucopolysaccharidosis type II (Hunter syndrome): a preliminary report. Acta Paediatr Suppl 2002; 91: 98–99.

    Article  CAS  Google Scholar 

  54. Harmatz P, Whitley CB, Waber L, Pais R, Steiner R, Plecko B et al. Enzyme replacement therapy in mucopolysaccharidosis VI (Maroteaux-Lamy syndrome). J Pediatr 2004; 144: 574–580.

    Article  CAS  Google Scholar 

  55. Vogler C, Sands MS, Levy B, Galvin N, Birkenmeier EH, Sly WS . Enzyme replacement with recombinant beta-glucuronidase in murine mucopolysaccharidosis type VII: impact of therapy during the first six weeks of life on subsequent lysosomal storage, growth, and survival. Pediatr Res 1996; 39: 1050–1054.

    Article  CAS  Google Scholar 

  56. Zhao KW, Neufeld EF . Purification and characterization of recombinant human alpha-N-acetylglucosaminidase secreted by Chinese hamster ovary cells. Protein Expr Purif 2000; 19: 202–211.

    Article  CAS  Google Scholar 

  57. Weber B, Hopwood JJ, Yogalingam G . Expression and characterization of human recombinant and alpha-N-acetylglucosaminidase. Protein Expr Purif 2001; 21: 251–259.

    Article  CAS  Google Scholar 

  58. Zolotukhin S, Byrne BJ, Mason E, Zolotukhin I, Potter M, Chesnut K et al. Recombinant adeno-associated virus purification using novel methods improves infectious titer and yield. Gene Therapy 1999; 6: 973–985.

    Article  CAS  PubMed  Google Scholar 

  59. Warburton EC, Baird A, Morgan A, Muir JL, Aggleton JP . The conjoint importance of the hippocampus and anterior thalamic nuclei for allocentric spatial learning: evidence from a disconnection study in the rat. J Neurosci 2001; 21: 7323–7330.

    Article  CAS  Google Scholar 

  60. Lijam N, Paylor R, McDonald MP, Crawley JN, Deng CX, Herrup K et al. Social interaction and sensorimotor gating abnormalities in mice lacking Dvl1. Cell 1997; 90: 895–905.

    Article  CAS  Google Scholar 

  61. Thompson JN, Nowakoski RW . Enzymatic diagnosis of selected mucopolysaccharidoses: Hunter, Morquio type A, and Sanfilippo types A, B, C, and D, and procedures for measurement of 35SO4-glycosaminoglycans. In: Hommes FA (ed). Techniques in Diagnostic Human Biochemical Genetics—A Laboratory Manual. Wiley-Liss: New York, 1991, pp 567–586.

    Google Scholar 

  62. van de Lest CH, Versteeg EM, Veerkamp JH, van Kuppevelt TH . Quantification and characterization of glycosaminoglycans at the nanogram level by a combined azure A-silver staining in agarose gels. Anal Biochem 1994; 221: 356–361.

    Article  CAS  Google Scholar 

  63. de Jong JG, Wevers RA, Laarakkers C, Poorthuis BJ . Dimethylmethylene blue-based spectrophotometry of glycosaminoglycans in untreated urine: a rapid screening procedure for mucopolysaccharidoses. Clin Chem 1989; 35: 1472–1477.

    CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr Elizabeth F Neufeld for generously providing us the hNaGlu antibody. This study was sponsored by Ben's Dream—The Sanfilippo Research Foundation, NIDDK (R01 DK63972) and TRINCH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H Fu.

Additional information

Conflict of interest

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

McCarty, D., DiRosario, J., Gulaid, K. et al. Mannitol-facilitated CNS entry of rAAV2 vector significantly delayed the neurological disease progression in MPS IIIB mice. Gene Ther 16, 1340–1352 (2009). https://doi.org/10.1038/gt.2009.85

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gt.2009.85

Keywords

This article is cited by

Search

Quick links