Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

The role of the Toll receptor pathway in susceptibility to inflammatory bowel diseases

Abstract

The intestinal flora has long been thought to play a role either in initiating or in exacerbating the inflammatory bowel diseases (IBD). Host defenses, such as those mediated by the Toll-like receptors (TLR), are critical to the host/pathogen interaction and have been implicated in IBD pathophysiology. To explore the association of genetic variation in TLR pathways with susceptibility to IBD, we performed a replication study and pooled analyses of the putative IBD risk alleles in NFKB1 and TLR4, and we performed a haplotype-based screen for association to IBD in the TLR genes and a selection of their adaptor and signaling molecules. Our genotyping of 1539 cases of IBD and pooled analysis of 4805 cases of IBD validates the published association of a TLR4 allele with risk of IBD (odds ratio (OR): 1.30, 95% confidence interval (CI): 1.15–1.48; P=0.00017) and Crohn's disease (OR: 1.33, 95% CI: 1.16–1.54; P=0.000035) but not ulcerative colitis. We also describe novel suggestive evidence that TIRAP (OR: 1.16, 95% CI: 1.04–1.30; P=0.007) has a modest effect on risk of IBD. Our analysis, therefore, offers additional evidence that the TLR4 pathway – in this case, TLR4 and its signaling molecule TIRAP – plays a role in susceptibility to IBD.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  1. Baron S, Turck D, Leplat C, Merle V, Gower-Rousseau C, Marti R et al. Environmental risk factors in paediatric inflammatory bowel diseases: a population based case control study. Gut 2005; 54: 357–363.

    Article  CAS  Google Scholar 

  2. Probert CS, Jayanthi V, Hughes AO, Thompson JR, Wicks AC, Mayberry JF . Prevalence and family risk of ulcerative colitis and Crohn's disease: an epidemiological study among Europeans and south Asians in Leicestershire. Gut 1993; 34: 1547–1551.

    Article  CAS  Google Scholar 

  3. Satsangi J, Grootscholten C, Holt H, Jewell DP . Clinical patterns of familial inflammatory bowel disease. Gut 1996; 38: 738–741.

    Article  CAS  Google Scholar 

  4. Ohkusa T, Nomura T, Sato N . The role of bacterial infection in the pathogenesis of inflammatory bowel disease. Intern Med 2004; 43: 534–539.

    Article  CAS  Google Scholar 

  5. Elson CO, Cong Y, Brandwein S, Weaver CT, McCabe RP, Mahler M et al. Experimental models to study molecular mechanisms underlying intestinal inflammation. Ann N Y Acad Sci 1998; 859: 85–95.

    Article  CAS  Google Scholar 

  6. Lange S, Delbro DS, Jennische E, Mattsby-Baltzer I . The role of the Lps gene in experimental ulcerative colitis in mice. APMIS 1996; 104: 823–833.

    Article  CAS  Google Scholar 

  7. Araki A, Kanai T, Ishikura T, Makita S, Uraushihara K, Iiyama R et al. MyD88-deficient mice develop severe intestinal inflammation in dextran sodium sulfate colitis. J Gastroenterol 2005; 40: 16–23.

    Article  CAS  Google Scholar 

  8. Fukata M, Michelsen KS, Eri R, Thomas LS, Hu B, Lukasek K et al. Toll-like receptor-4 is required for intestinal response to epithelial injury and limiting bacterial translocation in a murine model of acute colitis. Am J Physiol Gastrointest Liver Physiol 2005; 288: G1055–G1065.

    Article  CAS  Google Scholar 

  9. Rakoff-Nahoum S, Paglino J, Eslami-Varzaneh F, Edberg S, Medzhitov R . Recognition of commensal microflora by toll-like receptors is required for intestinal homeostasis. Cell 2004; 118: 229–241.

    Article  CAS  Google Scholar 

  10. Hampe J, Cuthbert A, Croucher PJ, Mirza MM, Mascheretti S, Fisher S et al. Association between insertion mutation in NOD2 gene and Crohn's disease in German and British populations. Lancet 2001; 357: 1925–1928.

    Article  CAS  Google Scholar 

  11. Hugot JP, Chamaillard M, Zouali H, Lesage S, Cezard JP, Belaiche J et al. Association of NOD2 leucine-rich repeat variants with susceptibility to Crohn's disease. Nature 2001; 411: 599–603.

    Article  CAS  Google Scholar 

  12. Ogura Y, Bonen DK, Inohara N, Nicolae DL, Chen FF, Ramos R et al. A frameshift mutation in NOD2 associated with susceptibility to Crohn's disease. Nature 2001; 411: 603–606.

    Article  CAS  Google Scholar 

  13. Kobayashi KS, Chamaillard M, Ogura Y, Henegariu O, Inohara N, Nunez G et al. Nod2-dependent regulation of innate and adaptive immunity in the intestinal tract. Science 2005; 307: 731–734.

    Article  CAS  Google Scholar 

  14. Maeda S, Hsu LC, Liu H, Bankston LA, Iimura M, Kagnoff MF et al. Nod2 mutation in Crohn's disease potentiates NF-kappaB activity and IL-1beta processing. Science 2005; 307: 734–738.

    Article  CAS  Google Scholar 

  15. Takeda K, Akira S . Toll-like receptors in innate immunity. Int Immunol 2005; 17: 1–14.

    Article  CAS  Google Scholar 

  16. Zhang D, Zhang G, Hayden MS, Greenblatt MB, Bussey C, Flavell RA et al. A toll-like receptor that prevents infection by uropathogenic bacteria. Science 2004; 303: 1522–1526.

    Article  CAS  Google Scholar 

  17. Austin AS, Judge HM, Robins RA, Cockayne A, Mahida YR . Responses to free lipopolysaccharide and Escherichia coli by normal human intestinal macrophages, following their migration out of the lamina propria. Scand J Immunol 2005; 61: 575–584.

    Article  CAS  Google Scholar 

  18. Cario E, Podolsky DK . Differential alteration in intestinal epithelial cell expression of toll-like receptor 3 (TLR3) and TLR4 in inflammatory bowel disease. Infect Immun 2000; 68: 7010–7017.

    Article  CAS  Google Scholar 

  19. Ortega-Cava CF, Ishihara S, Rumi MA, Kawashima K, Ishimura N, Kazumori H et al. Strategic compartmentalization of Toll-like receptor 4 in the mouse gut. J Immunol 2003; 170: 3977–3985.

    Article  CAS  Google Scholar 

  20. Otte JM, Rosenberg IM, Podolsky DK . Intestinal myofibroblasts in innate immune responses of the intestine. Gastroenterology 2003; 124: 1866–1878.

    Article  CAS  Google Scholar 

  21. Singh JC, Cruickshank SM, Newton DJ, Wakenshaw L, Graham A, Lan J et al. Toll-like receptor-mediated responses of primary intestinal epithelial cells during the development of colitis. Am J Physiol Gastrointest Liver Physiol 2005; 288: G514–G524.

    Article  CAS  Google Scholar 

  22. Strong SA, Pizarro TT, Klein JS, Cominelli F, Fiocchi C . Proinflammatory cytokines differentially modulate their own expression in human intestinal mucosal mesenchymal cells. Gastroenterology 1998; 114: 1244–1256.

    Article  CAS  Google Scholar 

  23. van Tol EA, Holt L, Li FL, Kong FM, Rippe R, Yamauchi M et al. Bacterial cell wall polymers promote intestinal fibrosis by direct stimulation of myofibroblasts. Am J Physiol 1999; 277 (1 part 1): G245–G255.

    CAS  PubMed  Google Scholar 

  24. Franchimont D, Vermeire S, El Housni H, Pierik M, Van Steen K, Gustot T et al. Deficient host-bacteria interactions in inflammatory bowel disease? The toll-like receptor (TLR)-4 Asp299gly polymorphism is associated with Crohn's disease and ulcerative colitis. Gut 2004; 53: 987–992.

    Article  CAS  Google Scholar 

  25. Karban AS, Okazaki T, Panhuysen CI, Gallegos T, Potter JJ, Bailey-Wilson JE et al. Functional annotation of a novel NFKB1 promoter polymorphism that increases risk for ulcerative colitis. Hum Mol Genet 2004; 13: 35–45.

    Article  CAS  Google Scholar 

  26. Arnott ID, Nimmo ER, Drummond HE, Fennell J, Smith BR, MacKinlay E et al. NOD2/CARD15, TLR4 and CD14 mutations in Scottish and Irish Crohn's disease patients: evidence for genetic heterogeneity within Europe? Genes Immun 2004; 5: 417–425.

    Article  CAS  Google Scholar 

  27. Borm ME, van Bodegraven AA, Mulder CJ, Kraal G, Bouma G . A NFKB1 promoter polymorphism is involved in susceptibility to ulcerative colitis. Int J Immunogenet 2005; 32: 401–405.

    Article  CAS  Google Scholar 

  28. Brand S, Staudinger T, Schnitzler F, Pfennig S, Hofbauer K, Dambacher J et al. The role of Toll-like receptor 4 Asp299Gly and Thr399Ile polymorphisms and CARD15/NOD2 mutations in the susceptibility and phenotype of Crohn's disease. Inflamm Bowel Dis 2005; 11: 645–652.

    Article  Google Scholar 

  29. Gazouli M, Mantzaris G, Kotsinas A, Zacharatos P, Papalambros E, Archimandritis A et al. Association between polymorphisms in the Toll-like receptor 4, CD14, and CARD15/NOD2 and inflammatory bowel disease in the Greek population. World J Gastroenterol 2005; 11: 681–685.

    Article  CAS  Google Scholar 

  30. Lakatos PL, Lakatos L, Szalay F, Willheim-Polli C, Osterreicher C, Tulassay Z et al. Toll-like receptor 4 and NOD2/CARD15 mutations in Hungarian patients with Crohn's disease: phenotype-genotype correlations. World J Gastroenterol 2005; 11: 1489–1495.

    Article  CAS  Google Scholar 

  31. Oliver J, Gomez-Garcia M, Paco L, Lopez-Nevot MA, Pinero A, Correro F et al. A functional polymorphism of the NFKB1 promoter is not associated with ulcerative colitis in a Spanish population. Inflamm Bowel Dis 2005; 11: 576–579.

    Article  Google Scholar 

  32. Oostenbrug LE, Drenth JP, de Jong DJ, Nolte IM, Oosterom E, van Dullemen HM et al. Association between Toll-like receptor 4 and inflammatory bowel disease. Inflamm Bowel Dis 2005; 11: 567–575.

    Article  Google Scholar 

  33. Ouburg S, Mallant-Hent R, Crusius JB, van Bodegraven AA, Mulder CJ, Linskens R et al. The toll-like receptor 4 (TLR4) Asp299Gly polymorphism is associated with colonic localisation of Crohn's disease without a major role for the Saccharomyces cerevisiae mannan-LBP-CD14-TLR4 pathway. Gut 2005; 54: 439–440.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Torok HP, Glas J, Tonenchi L, Mussack T, Folwaczny C . Polymorphisms of the lipopolysaccharide-signaling complex in inflammatory bowel disease: association of a mutation in the Toll-like receptor 4 gene with ulcerative colitis. Clin Immunol 2004; 112: 85–91.

    Article  CAS  Google Scholar 

  35. Glas J, Torok HP, Tonenchi L, Muller-Myhsok B, Mussack T, Wetzke M et al. Role of the NFKB1 -94ins/delATTG promoter polymorphism in IBD and potential interactions with polymorphisms in the CARD15/NOD2, IKBL, and IL-1RN genes. Inflamm Bowel Dis 2006; 12: 606–611.

    Article  Google Scholar 

  36. Lohmueller KE, Pearce CL, Pike M, Lander ES, Hirschhorn JN . Meta-analysis of genetic association studies supports a contribution of common variants to susceptibility to common disease. Nat Genet 2003; 33: 177–182.

    Article  CAS  Google Scholar 

  37. Ioannidis JP, Ntzani EE, Trikalinos TA, Contopoulos-Ioannidis DG . Replication validity of genetic association studies. Nat Genet 2001; 29: 306–309.

    Article  CAS  Google Scholar 

  38. Arbour NC, Lorenz E, Schutte BC, Zabner J, Kline JN, Jones M et al. TLR4 mutations are associated with endotoxin hyporesponsiveness in humans. Nat Genet 2000; 25: 187–191.

    Article  CAS  Google Scholar 

  39. Erridge C, Stewart J, Poxton IR . Monocytes heterozygous for the Asp299Gly and Thr399Ile mutations in the Toll-like receptor 4 gene show no deficit in lipopolysaccharide signalling. J Exp Med 2003; 197: 1787–1791.

    Article  CAS  Google Scholar 

  40. Hardy MP, O'Neill LA . The murine IRAK2 gene encodes four alternatively spliced isoforms, two of which are inhibitory. J Biol Chem 2004; 279: 27699–27708.

    Article  CAS  Google Scholar 

  41. Imahara SD, Jelacic S, Junker CE, O'Keefe GE . The TLR4 +896 polymorphism is not associated with lipopolysaccharide hypo-responsiveness in leukocytes. Genes Immun 2005; 6: 37–43.

    Article  CAS  Google Scholar 

  42. Schippers EF, van ‘t Veer C, van Voorden S, Martina CA, Huizinga TW, le Cessie S et al. IL-10 and toll-like receptor-4 polymorphisms and the in vivo and ex vivo response to endotoxin. Cytokine 2005; 29: 215–228.

    Article  CAS  Google Scholar 

  43. Schippers EF, van ‘t Veer C, van Voorden S, Martina CA, le Cessie S, van Dissel JT . TNF-alpha promoter, Nod2 and toll-like receptor-4 polymorphisms and the in vivo and ex vivo response to endotoxin. Cytokine 2004; 26: 16–24.

    Article  CAS  Google Scholar 

  44. von Aulock S, Schroder NW, Gueinzius K, Traub S, Hoffmann S, Graf K et al. Heterozygous toll-like receptor 4 polymorphism does not influence lipopolysaccharide-induced cytokine release in human whole blood. J Infect Dis 2003; 188: 938–943.

    Article  CAS  Google Scholar 

  45. Wesche H, Gao X, Li X, Kirschning CJ, Stark GR, Cao Z . IRAK-M is a novel member of the pelle/interleukin-1 receptor-associated kinase (IRAK) family. J Biol Chem 1999; 274: 19403–19410.

    Article  CAS  Google Scholar 

  46. Takeda K, Kaisho T, Akira S . Toll-like receptors. Annu Rev Immunol 2003; 21: 335–376.

    Article  CAS  Google Scholar 

  47. Rallabhandi P, Bell J, Boukhvalova MS, Medvedev A, Lorenz E, Arditi M et al. Analysis of TLR4 polymorphic variants: new insights into TLR4/MD-2/CD14 stoichiometry, structure, and signaling. J Immunol 2006; 177: 322–332.

    Article  CAS  Google Scholar 

  48. Ueda H, Howson JM, Esposito L, Heward J, Snook H, Chamberlain G et al. Association of the T-cell regulatory gene CTLA4 with susceptibility to autoimmune disease. Nature 2003; 423: 506–511.

    Article  CAS  Google Scholar 

  49. Rioux JD, Abbas AK . Paths to understanding the genetic basis of autoimmune disease. Nature 2005; 435: 584–589.

    Article  CAS  Google Scholar 

  50. Economou M, Trikalinos TA, Loizou KT, Tsianos EV, Ioannidis JP . Differential effects of NOD2 variants on Crohn's disease risk and phenotype in diverse populations: a metaanalysis. Am J Gastroenterol 2004; 99: 2393–2404.

    Article  CAS  Google Scholar 

  51. Lennard-Jones JE . Classification of inflammatory bowel disease. Scand J Gastroenterol Suppl 1989; 170: 2–6 (discussion 16–19).

    Article  CAS  Google Scholar 

  52. Podolsky DK . Inflammatory bowel disease (1). New Engl J Med 1991; 325: 928–937.

    Article  CAS  Google Scholar 

  53. Vermeire S, Wild G, Kocher K, Cousineau J, Dufresne L, Bitton A et al. CARD15 genetic variation in a Quebec population: prevalence, genotype-phenotype relationship, and haplotype structure. Am J Hum Genet 2002; 71: 74–83.

    Article  CAS  Google Scholar 

  54. Nguyen GC, Torres EA, Regueiro M, Bromfield G, Bitton A, Stempak J et al. Inflammatory bowel disease characteristics among African Americans, Hispanics, and non-Hispanic Whites: characterization of a large North American cohort. Am J Gastroenterol 2006; 101: 1012–1023.

    Article  Google Scholar 

  55. Louis E, Michel V, Hugot JP, Reenaers C, Fontaine F, Delforge M et al. Early development of stricturing or penetrating pattern in Crohn's disease is influenced by disease location, number of flares, and smoking but not by NOD2/CARD15 genotype. Gut 2003; 52: 552–557.

    Article  CAS  Google Scholar 

  56. Pierik M, Joossens S, Van Steen K, Van Schuerbeek N, Vlietinck R, Rutgeerts P et al. Toll-like receptor-1, -2, and -6 polymorphisms influence disease extension in inflammatory bowel diseases. Inflamm Bowel Dis 2006; 12: 1–8.

    Article  Google Scholar 

  57. Goris A, Sawcer S, Vandenbroeck K, Carton H, Billiau A, Setakis E et al. New candidate loci for multiple sclerosis susceptibility revealed by a whole genome association screen in a Belgian population. J Neuroimmunol 2003; 143: 65–69.

    Article  CAS  Google Scholar 

  58. Barrett JC, Fry B, Maller J, Daly MJ . Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics 2005; 21: 263–265.

    Article  CAS  Google Scholar 

  59. Excoffier L, Slatkin M . Maximum-likelihood estimation of molecular haplotype frequencies in a diploid population. Mol Biol Evol 1995; 12: 921–927.

    CAS  PubMed  Google Scholar 

  60. Qin ZS, Niu T, Liu JS . Partition-ligation-expectation-maximization algorithm for haplotype inference with single-nucleotide polymorphisms. Am J Hum Genet 2002; 71: 1242–1247.

    Article  CAS  Google Scholar 

  61. Spielman RS, Ewens WJ . The TDT and other family-based tests for linkage disequilibrium and association. Am J Hum Genet 1996; 59: 983–989.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Florez JC, Burtt N, de Bakker PI, Almgren P, Tuomi T, Holmkvist J et al. Haplotype structure and genotype-phenotype correlations of the sulfonylurea receptor and the islet ATP-sensitive potassium channel gene region. Diabetes 2004; 53: 1360–1368.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank patients with IBD and their families for their collaboration on this project. We also thank Drs Ramnik Xavier and Philippe Goyette for their helpful comments on the manuscript. PLD is the William C Fowler scholar in Multiple Sclerosis and is supported by an NINDS K08 grant as well as the Clinical Investigator Training Program: Harvard-MIT Health Sciences and Technology Beth Israel Deaconess Medical Center, in collaboration with Pfizer Inc. The authors have no conflicts of interest to report. EL is supported by the FNRS Belgium. AG is a postdoctoral fellow of the Fund for Scientific Research-Flanders and BD is supported by the University Research Council of the University of Leuven, Belgium. JDR is supported by grants from the NIDDK and the CCFA. The authors have no conflict of interest to report.

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to J D Rioux.

Additional information

Web resources

PubMed (http://www.ncbi.nlm.nih.gov/entrez/query.fcgi)

dbSNP (http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=Snp)

UCSC Genome Browser (http://genome.ucsc.edu/)

LocusView (http://www.broad.mit.edu/mpg/locusview/)

Haploview (www.broad.mit.edu/mpg/haploview/)

Genetic Power calculator (http://statgen.iop.kcl.ac.uk/gpc/)

Supplementary Information accompanies the paper on Genes and Immunity website (http://www.nature.com/gene)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

De Jager, P., Franchimont, D., Waliszewska, A. et al. The role of the Toll receptor pathway in susceptibility to inflammatory bowel diseases. Genes Immun 8, 387–397 (2007). https://doi.org/10.1038/sj.gene.6364398

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gene.6364398

Keywords

This article is cited by

Search

Quick links