Reviews & Analysis

Filter By:

Article Type
Year
  • This article reports on the findings of an international workshop organised by the UK-France Genomics and Ethics Network (UK-FR GENE) in 2021. They focus specifically on how collection, storage and sharing of genomic data may pose challenges to established principles and values such as trust, confidentiality, and privacy in countries that have implemented, or are about to implement, large-scale national genomic initiatives. These challenges impact the relationships between patients/citizens and medicine/science, and on each party’s rights and duties towards each other. Our geographic scope of comparative analysis includes initiatives underway in England (Genomics England), France (Plan France Médecine Génomique) and Germany (German Human Genome-Phenome Archive). We discuss existing as well as future challenges raised by large-scale health data collection and management in each country. We conclude that the prospects of improving individualised patient healthcare as well as contributing to the scientific and research prosperity of any given nation engaged in health data collection, storage and processing are undeniable. However, we also attempt to demonstrate that biomedical data requires careful management, and transparent and accountable governance structures that are clearly communicated to patients/participants and citizens. Furthermore, when third parties partake as stakeholders, transparent consent protocols relative to data access and use come centre stage, and patient benefits must clearly outweigh commercial interests. Finally, any cross-border data transfer needs to be carefully managed to address incoherencies between regional, national, and supranational regulations and recommendations.

    • Ruth Horn
    • Jennifer Merchant
    • Eva Winkler
    Meeting ReportOpen Access
  • In 1927 Arthur Cecil Alport, a South African physician, described a British family with an inherited form of kidney disease that affected males more severely than females and was sometimes associated with hearing loss. In 1961, the eponymous name Alport syndrome was adopted. In the late twentieth century three genes responsible for the disease were discovered: COL4A3, COL4A4, and COL4A5 encoding for the α3, α4, α5 polypeptide chains of type IV collagen, respectively. These chains assemble to form heterotrimers of type IV collagen in the glomerular basement membrane. Scientists, clinicians, patient representatives and their families, and pharma companies attended the 2019 International Workshop on Alport Syndrome, held in Siena, Italy, from October 22 to 26, and the 2021 online Workshop from November 30 to December 4. The main topics included: disease re-naming, acknowledging the need to identify an appropriate term able to reflect considerable clinical variability; a strategy for increasing the molecular diagnostic rate; genotype-phenotype correlation from monogenic to digenic forms; new therapeutics and new therapeutic approaches; and gene therapy using gene editing. The exceptional collaborative climate that was established in the magical medieval setting of Siena continued in the online workshop of 2021. Conditions were established for collaborations between leading experts in the sector, including patients and drug companies, with the aim of identifying a cure for Alport syndrome.

    • Sergio Daga
    • Jie Ding
    • Alessandra Renieri
    Meeting ReportOpen Access