Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Volume 27 Issue 12, December 2017

Research Highlight

  • Circular RNAs (circRNAs) are a novel class of RNA whose physiological function has yet to be investigated. A recent publication in Science provides the first evidence of the biological relevance of a circRNA in an in vivo model and unveils an unexpected twist on their crosstalk with miRNAs.

    • Marco Bezzi
    • Jlenia Guarnerio
    • Pier Paolo Pandolfi
    Research Highlight

    Advertisement

  • In a paper recently published in Cell Research, Yu et al. identify two MAPK-related kinases, MAPK11 and HIPK3, as positive regulators of levels of mutant huntingtin protein, a toxic species highly involved in Huntington's disease (HD) pathology. The identification and validation of these kinases as therapeutic targets for knockdown in multiple relevant experimental model systems reveal novel potential approaches for treatment of HD.

    • Leon Tejwani
    • Janghoo Lim
    Research Highlight
  • Recently, ZATT (also known as ZNF451 or Zpf451) was reported by Schellenberg et al. to aid the removal of Topoisomerase II cleavage complexes by stimulating the phosphodiesterase activity of Tyrosyl DNA Phosphodiesterase 2. Although the full implication of this discovery is unknown, it will help us understand how cells respond to topoisomerase-induced genome damage and chemotherapeutic topoisomerase 'poisons'.

    • Guido Zagnoli-Vieira
    • Keith W Caldecott
    Research Highlight
  • Type I interferon (IFN) signaling is critical for intracellular antimicrobial programmes, affecting both innate and adaptive immune responses. The paper recently published in Cell demonstrates a new regulatory mechanism of the type I IFN signaling pathway by histone-lysine N-methyltransferase SETD2.

    • Hideyuki Yanai
    • Tadatsugu Taniguchi
    Research Highlight
Top of page ⤴

Original Article

Top of page ⤴

Letter to the Editor

Top of page ⤴

Search

Quick links