News & Comment

Filter By:

Article Type
Year
  • Molecular skeletal editing has a wide range of applications in late-stage derivatization, but metal–carbon exchange is underexplored due to the challenges in selectively cleaving highly inert chemical bonds and forming stable intermediates. Here, skeletal metalation of lactams enables a carbonyl-to-nickel exchange via Ni(0) reagent-mediated selective C–N bond oxidative addition and decarbonylation, generating synthetically useful organonickel reagents for the deletion and exchange of single atoms in the lactam core.

    • Huijuan Guo
    Research HighlightOpen Access
  • Fluorochemicals have a wide range of applications in industry, but accessing these relies on the energy intensive conversion of acid-grade fluorspar (CaF2) to toxic hydrogen fluoride (HF) gas, which is in turn used for the downstream production of fluorochemicals via multistep processes. Now, directly treating acid-grade fluorspar with dipotassium hydrogen phosphate (K2HPO4) under mechanochemical conditions affords a fluorinating reagent for direct S–F and C(sp3/sp2)–F bond construction, bypassing the need for HF production.

    • Huijuan Guo
    Research HighlightOpen Access
  • Chiral halogen-bonding catalysts have emerged as a new approach towards asymmetric catalysis, but enantioselectivities have thus far remained low. Now, fine-tuning the substrate–catalyst halogen–halogen interactions is shown to significantly enhance enantioselectivity for a model anion-binding-catalyzed dearomatization reaction.

    • Victoria Richards
    Research HighlightOpen Access
  • To solve the environmental disaster that is generated by legacy plastics accumulation, researchers are looking to design plastics with enhanced end-of-life options, but many circular plastics do not meet industrial requirements. Here, we highlight a metal-free approach to produce chemically recyclable poly(1,3-dioxolane) with ultra-high molecular weight and comparable properties to one of the most produced plastics, polyethylene.

    • Ainara Sangroniz
    • Haritz Sardon
    Research HighlightOpen Access
  • Economical and high-efficiency synthesis of single-atom catalysts is a tremendous challenge hampering their large-scale industrialization, which is mainly attributed to the complex equipment and processes necessary for both top-down and bottom-up synthesis methods. Now, a facile three-dimensional printing approach tackles this dilemma. From a solution of printing ink and metal precursors, target materials with specific geometric shapes are prepared with high output, directly and automatically.

    • Yuhua Liu
    • Wei Zhang
    Research HighlightOpen Access
  • Combining the superior photovoltaic performance of three-dimensional perovskites and the intrinsic durability of two-dimensional perovskites, the construction of 3D/2D perovskite bilayer heterojunctions is a promising strategy to realize efficient and stable perovskite solar cells, but it is still a challenge to control the phase purity, film thickness, orientation, and crystal structure of 2D perovskites. Now, a solution-processing strategy has overcome this challenge by directly coating a tailored single-crystal 2D perovskite ink on as-prepared 3D perovskite films, resulting in effective, ultra-stable and phase-pure 3D/2D perovskite bilayer heterojunctions.

    • Xinxin Lian
    • Hong Zhang
    • Junhao Chu
    Research HighlightOpen Access