News & Comment

Filter By:

  • In-depth understanding of the bonding characteristics of the lanthanide ions in contemporary lanthanide-based materials is mandatory for tailoring their properties for novel applications. Here, the authors elaborate on open questions regarding the bonding situation in mainly molecular lanthanide (4f) compounds, where, as compared to their actinide (5f) analogs in which covalency of the bonds is a common feature, this is still under discussion for the 4f compounds.

    • T. Vitova
    • P. W. Roesky
    • S. Dehnen
    CommentOpen Access
  • Most of our knowledge about the chemical composition of the Earth’s interior is primarily retrieved by indirect observations, experiments and calculations that are limited to simple compositions. Here, the authors present the investigation of inclusions trapped in super deep diamonds as an alternative source of a wealth of information on the chemical state of the Earth’s interior through time.

    • Matteo Alvaro
    • Ross John Angel
    • Fabrizio Nestola
    CommentOpen Access
  • The Editors and Editorial Board of Communications Chemistry are pleased to launch a 2021 Editors’ Highlights collection featuring some of their favourite Articles published in the journal this year. Here we highlight each Article and outline why it was selected.

    EditorialOpen Access
  • Transition metals are increasingly recognized as key drivers in the formation and aging of light-absorbing organic aerosols, known as brown carbon, which impact the energy flux in the atmosphere. Here the authors discuss somewhat overlooked condensed phase chemical processes and identify research needs to improve our fundamental understanding of atmospheric aerosols and ultimately reduce modelling uncertainties of the direct and indirect effects of aerosol particles on the climate.

    • Hind A. Al-Abadleh
    • Sergey A. Nizkorodov
    CommentOpen Access
  • The transfer of chiral information from optically pure reaction components to products can generate enantiomerically-enriched molecules, but the control of stereochemistry often proves challenging. Here, the author highlights how our fundamental understanding of stereocontrol has evolved and discusses possible approaches for the rational development of enantioselective catalysts.

    • Jolene P. Reid
    CommentOpen Access
  • Small changes in protein structure can have pronounced effects on protein–protein interactions, but quantifying this has only recently become possible. Now, the binding landscapes of three homologous enzyme–inhibitor complexes are quantified and shown to depend on whether the inhibitor binds its natural target or a structurally similar protein.

    • Andrew J. Bissette
    Research HighlightOpen Access
  • Understanding heat conduction in solids is fundamental to the design of high-performing thermoelectric materials. Now, a combined computational and experimental study shows how local order paired with long-range disorder leads to a desirable reduction in thermal conductivity while retaining high electron mobility in the Zintl phase Eu2ZnSb2.

    • Teresa S. Ortner
    Research HighlightOpen Access
  • Crystallization is observed in both nature and in the lab, and is critical to diverse areas of science and technology. Here, the author summarizes the theories that have been proposed to explain crystal growth from melts, and raises some open questions that remain.

    • Feier Hou
    CommentOpen Access
  • Porous materials play a significant role in modern chemistry and materials science; despite recent scientific interest, they have a history dating back to antiquity. Here the authors provide a brief overview of the past that has contributed to their evolution.

    • Gregory S. Day
    • Hannah F. Drake
    • Matthew R. Ryder
    CommentOpen Access
  • Aimed to decipher the levels of metabolites, metabolomics can now advance to unraveling their functionalities in various contexts. Here, the authors present the metabolite medicine concept, integrating classical metabolomics methods with advanced computational and structural tools to facilitate functional studies.

    • Shira Shaham-Niv
    • Sigal Rencus-Lazar
    • Ehud Gazit
    CommentOpen Access
  • DNA-templated synthesis of chiral inorganic assemblies often requires chemical modification of the template. Now, a route exploiting the native chemistry of unmodified DNA origami templates provides access to 3D chiral assemblies.

    • Andrew J. Bissette
    Research HighlightOpen Access
  • Water adsorption in soft nanoporous materials can trigger large-scale structural transitions and introduce new properties in the confined water phase. Here, we look at some of the outstanding questions in this lively field of research.

    • François-Xavier Coudert
    • Anne Boutin
    • Alain H. Fuchs
    CommentOpen Access
  • The Hückel rule defines that monocyclic and planar conjugated systems containing [4n + 2] π electrons are aromatic. Here, the authors highlight boron species that feature a globally 4n π system, defying the Hückel rule, but nonetheless exhibit aromaticity.

    • Kei Ota
    • Rei Kinjo
    CommentOpen Access
  • The commercial use of natural methane hydrate is hampered by several open questions that remain regarding hydrate formation. Here the authors comment on past interpretations and aim to provide a roadmap for developing a predictive theory of methane hydrate nucleation.

    • Guang-Jun Guo
    • Zhengcai Zhang
    CommentOpen Access
  • The process of thermally activated delayed fluorescence (TADF) converts non-radiative triplet states into emissive singlet states. Herein we outline the fundamentals of TADF, some of the recent progress in understanding the key material properties responsible for promoting TADF and finally discuss some remaining challenges for the  potential applications of this phenomenon.

    • Julien Eng
    • Thomas J. Penfold
    CommentOpen Access
  • Superheavy elements are ideal for furthering our understanding of relativistic effects and how they affect physicochemical properties of heavy elements. In this comment, the author discusses the role of chemistry in the synthesis of new elements before addressing the future challenges concerning the chemical characterization of superheavy elements.

    • Patrick Steinegger
    CommentOpen Access
  • Ultrafast singlet fission has the potential to facilitate highly efficient photovoltaics through the multiplication of excitons in organic molecular architectures. Here, we consider the interplay of molecular structure and intermolecular coupling toward enabling ultrafast singlet fission and discuss open questions in the field.

    • Justin C. Johnson
    CommentOpen Access
  • Preorganization is an effective strategy for f-element separation, but the complexity of extractant synthesis hinders large-scale application. Here the authors discuss an alternative strategy induced by in situ self-assembly that borrows principles of multivalent cooperativity from Nature to separate f-elements.

    • Lixi Chen
    • Shuao Wang
    CommentOpen Access
  • Lewis acid additives such as aluminium can enable fascinating new reactivity in transition metal catalysts, but few catalytic intermediates have been characterised. Now, a nickel-aluminium pincer complex offers new mechanistic insight into transmetalation, and new potential for reactivity.

    • Andrew J. Bissette
    Research HighlightOpen Access