Collection |

Wildfire and ecosystems

A number of enormously destructive fires raged around the globe in 2018. Wildfires are an integral part of ecosystems, but human activities and climate change disturb ecosystems and can change fire characteristics and their impacts.

Here, we bring together a collection of research and opinion articles in Nature Geoscience that explore the trends and impacts of wildfires in disturbed ecosystems. In addition to these pieces, we present selected articles published in Nature, Nature Ecology and Evolution, Nature Climate Change, Nature Plants and Nature Communications.

Wildfire and ecosystems

Wildfires are a natural part of many ecosystems, but they can become destructive and less predictable, especially when the system is perturbed. Human activities and climate change lead to interactions with fire dynamics that need our attention.

Editorial | | Nature Geoscience

Cumulative wildfires or prescribed burning produce different outcomes for the vegetation, suggest two long-term analyses of fire-affected ecosystems. Climate change and land management practices are altering how ecosystems function.

News & Views | | Nature Geoscience

Fires and logging alter soil composition and result in a significant reduction of soil nutrients that lasts for decades after the disturbance, suggests an analysis of soil samples across a multi-century sequence in mountain ash forests.

Article | | Nature Geoscience

The amount of carbon stored in peats exceeds that stored in vegetation. A synthesis of the literature suggests that smouldering fires in peatlands could become more common as the climate warms, and release old carbon to the air.

Progress Article | | Nature Geoscience

Under drought conditions, biomass burning in Indonesia is a disproportionate contributor to the global carbon dioxide emissions from such events. An analysis of Indonesian records of large fires shows that their occurrence is linked to land use and population dynamics, and that the Indian Ocean climate and El Niño both have an equally important influence.

Letter | | Nature Geoscience

A compilation of wildfire records spanning six continents and 2,000 years reveals global patterns in biomass burning to be temporally linked with changes in climate, population and land use. An abrupt decline in biomass burning beginning about 150 years ago may be related to the expansion of intensive grazing, agriculture and fire management activities.

Article | | Nature Geoscience

Wildfires have been a natural part of the Earth system for millions of years. A new charcoal database for the past two millennia shows that human activity increased biomass burning after AD 1750 and suppressed it after AD 1870.

News & Views | | Nature Geoscience

Boreal forest fires tend to be more intense and lethal in North America than Eurasia. Differences in tree species composition explain these differences in fire regime, and lead to contrasting feedbacks to climate.

News & Views | | Nature Geoscience

Further reading

Global wildfires can have severe societal implications and economic cost and have been strongly linked to climate. Here, the authors analyse daily global wildfire trends and show that, during the past 35 years, wildfire season length has increased by 18.7% over more than a quarter of the Earth’s surface.

Article | Open Access | | Nature Communications

The patterns of naturally occurring fires have been altered, both spatially and temporally, as a result of climate and land-use changes. The long-term effects of fire frequency on soil carbon and nutrient storage and the resulting potential limitations on plant productivity remain poorly understood. On the basis of a meta-analysis and an independent dataset of additional field sites, this paper finds that frequent burning leads to soil carbon and nitrogen losses that emerge over decadal timescales. Furthermore, the authors use a model to suggest that the decadal losses of soil nitrogen as a result of more frequent burning could decrease the amount of carbon sequestered by net primary productivity.

Letter | | Nature

Globally, flora, fauna and many indigenous cultures have evolved to coexist sustainably with fire. We argue that the key to sustainable contemporary human coexistence with wildfires is a form of biomimicry that draws on the evolutionary adaptations of organisms that survive (and flourish) in the fire regimes in which they reside.

Comment | | Nature Ecology & Evolution

Deforestation carbon emissions from the Brazilian Amazon have declined steeply, but how much drought-induced forest fire emissions add to this process is still unclear. Here the authors show that gross emissions from forest fires are more than half as great as those from deforestation during drought years.

Article | Open Access | | Nature Communications

A warmer and drier climate will affect wildfire activity but the climate-fire relationship could change under warming. Here the authors use models with a non-stationary climate-fire relationship to show that to avoid doubling the burned area in the coming decades we must stay below 1.5 °C Paris target.

Article | Open Access | | Nature Communications