Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

Potent anti-angiogenesis and anti-tumor activity of a novel human anti-VEGF antibody, MIL60

Abstract

Angiogenesis is crucial for tumor development, growth and metastasis. Vascular endothelial growth factor (VEGF) has been implicated in promoting solid tumor growth and metastasis via stimulating tumor-associated angiogenesis, and blocking the activity of VEGF can starve tumors. Avastin, which is a humanized anti-VEGF antibody, has been successfully applied in clinics since 2004. However, the price of Avastin is extremely high for Chinese people. Here, we report a novel human anti-VEGF neutralizing antibody, MIL60, which shows an affinity comparable to that of Avastin (the KD value of MIL60 was 44.5 pM, while that of Avastin was 42.7 pM). MIL60 displays favorable actions in inhibiting VEGF-triggered endothelial cell proliferation (the IC50 value of MIL60 was 31±6.4 ng/ml and that of Avastin was 47±8.1 ng/ml), migration (8 µg/ml or 0.8 µg/ml MIL60 versus the control: P<0.05) and tube formation (2 µg/ml or 0.2 µg/ml MIL60 versus the control: P<0.05) via the VEGFR2 signaling pathway. Moreover, MIL60 was shown to inhibit tumor growth and angiogenesis in vivo in xenograft models of human colon carcinoma and ovarian cancer using immunotherapy and immunohistochemistry analysis (MIL60 versus N.S.: P=0.0007; Avastin versus N.S.: P=0.00046). These data suggest that MIL60 is a potential therapeutic, anti-angiogenic agent. Our work provides a novel anti-VEGF antibody, which can be considered an anti-tumor antibody candidate and a new option for patients with various cancers.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Carmeliet P, Jain RK . Molecular mechanisms and clinical applications of angiogenesis. Nature 2011; 473: 298–307.

    Article  CAS  Google Scholar 

  2. Ichihara E, Kiura K, Tanimoto M . Targeting angiogenesis in cancer therapy. Acta Med Okayama 2011; 65: 353–362.

    CAS  PubMed  Google Scholar 

  3. Ferrara N . Molecular and biological properties of vascular endothelial growth factor. J Mol Med (Berl) 1999; 77: 527–543.

    Article  CAS  Google Scholar 

  4. Klagsbrun M, D'Amore PA . Vascular endothelial growth factor and its receptors. Cytokine Growth Factor Rev 1996; 7: 259–270.

    Article  CAS  Google Scholar 

  5. Neufeld G, Cohen T, Gengrinovitch S, Poltorak Z . Vascular endothelial growth factor (VEGF) and its receptors. FASEB J 1999; 13: 9–22.

    Article  CAS  Google Scholar 

  6. Prewett M, Huber J, Li Y, Santiago A, O'Connor W, King K et al. Antivascular endothelial growth factor receptor (fetal liver kinase 1) monoclonal antibody inhibits tumor angiogenesis and growth of several mouse and human tumors. Cancer Res 1999; 59: 5209–5218.

    CAS  PubMed  Google Scholar 

  7. Kim KJ, Li B, Winer J, Armanini M, Gillett N, Phillips HS et al. Inhibition of vascular endothelial growth factor-induced angiogenesis suppresses tumour growth in vivo. Nature 1993; 362: 841–844.

    Article  CAS  Google Scholar 

  8. Gerber HP, Kowalski J, Sherman D, Eberhard DA, Ferrara N . Complete inhibition of rhabdomyosarcoma xenograft growth and neovascularization requires blockade of both tumor and host vascular endothelial growth factor. Cancer Res 2000; 60: 6253–6258.

    CAS  PubMed  Google Scholar 

  9. Konner J, Dupont J . Use of soluble recombinant decoy receptor vascular endothelial growth factor trap (VEGF Trap) to inhibit vascular endothelial growth factor activity. Clin Colorectal Cancer 2004; 4( Suppl 2): S81–S85.

    Article  CAS  Google Scholar 

  10. Ferrara N, Hillan KJ, Gerber HP, Novotny W . Discovery and development of bevacizumab, an anti-VEGF antibody for treating cancer. Nat Rev Drug Discov 2004; 3: 391–400.

    Article  CAS  Google Scholar 

  11. Gasparini G, Longo R, Toi M, Ferrara N . Angiogenic inhibitors: a new therapeutic strategy in oncology. Nat Clin Pract Oncol 2005; 2: 562–577.

    Article  CAS  Google Scholar 

  12. Ferrara N, Kerbel RS . Angiogenesis as a therapeutic target. Nature 2005; 438: 967–974.

    Article  CAS  Google Scholar 

  13. Jain RK, Duda DG, Clark JW, Loeffler JS . Lessons from phase III clinical trials on anti-VEGF therapy for cancer. Nat Clin Pract Oncol 2006; 3: 24–40.

    Article  CAS  Google Scholar 

  14. McTigue M, Murray BW, Chen JH, Deng YL, Solowiej J, Kania RS . Molecular conformations, interactions, and properties associated with drug efficiency and clinical performance among VEGFR TK inhibitors. Proc Natl Acad Sci USA 2012; 109: 18281–18289.

    Article  CAS  Google Scholar 

  15. Sullivan LA, Brekken RA . The VEGF family in cancer and antibody-based strategies for their inhibition. MAbs 2010; 2: 165–175.

    Article  Google Scholar 

  16. Hurwitz H, Fehrenbacher L, Novotny W, Cartwright T, Hainsworth J, Heim W et al. Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. N Engl J Med 2004; 350: 2335–2342.

    Article  CAS  Google Scholar 

  17. Sandler A, Gray R, Perry MC, Brahmer J, Schiller JH, Dowlati A et al. Paclitaxel-carboplatin alone or with bevacizumab for non-small-cell lung cancer. N Engl J Med 2006; 355: 2542–2550.

    Article  CAS  Google Scholar 

  18. Brooks BR, Brooks CL 3rd, Mackerell AD Jr, Nilsson L, Petrella RJ, Roux B et al. CHARMM: the biomolecular simulation program. J Comput Chem 2009; 30: 1545–1614.

    Article  CAS  Google Scholar 

  19. Maeda K, Chung YS, Ogawa Y, Takatsuka S, Kang SM, Ogawa M et al. Prognostic value of vascular endothelial growth factor expression in gastric carcinoma. Cancer 1996; 77: 858–863.

    Article  CAS  Google Scholar 

  20. Weidner N, Folkman J, Pozza F, Bevilacqua P, Allred EN, Moore DH et al. Tumor angiogenesis: a new significant and independent prognostic indicator in early-stage breast carcinoma. J Natl Cancer Inst 1992; 84: 1875–1887.

    Article  CAS  Google Scholar 

  21. Higgins B, Kolinsky K, Linn M, Adames V, Zhang YE, Moisa C et al. Antitumor activity of capecitabine and bevacizumab combination in a human estrogen receptor-negative breast adenocarcinoma xenograft model. Anticancer Res 2007; 27: 2279–2287.

    CAS  PubMed  Google Scholar 

  22. Martiny-Baron G, Korff T, Schaffner F, Esser N, Eggstein S, Marme D et al. Inhibition of tumor growth and angiogenesis by soluble EphB4. Neoplasia 2004; 6: 248–257.

    Article  CAS  Google Scholar 

  23. Qiao C, Lv M, Li X, Geng J, Li Y, Zhang J et al. Affinity maturation of antiHER2 monoclonal antibody MIL5 using an epitope-specific synthetic phage library by computational design. J Biomol Struct Dyn 2013; 31: 511–521.

    Article  CAS  Google Scholar 

  24. Papadopoulos N, Martin J, Ruan Q, Rafique A, Rosconi MP, Shi E et al. Binding and neutralization of vascular endothelial growth factor (VEGF) and related ligands by VEGF Trap, ranibizumab and bevacizumab. Angiogenesis 2012; 15: 171–185.

    Article  CAS  Google Scholar 

  25. Presta LG, Chen H, O'Connor SJ, Chisholm V, Meng YG, Krummen L et al. Humanization of an anti-vascular endothelial growth factor monoclonal antibody for the therapy of solid tumors and other disorders. Cancer Res 1997; 57: 4593–4599.

    CAS  PubMed  Google Scholar 

  26. Kim KJ, Li B, Houck K, Winer J, Ferrara N . The vascular endothelial growth factor proteins: identification of biologically relevant regions by neutralizing monoclonal antibodies. Growth Factors 1992; 7: 53–64.

    Article  CAS  Google Scholar 

  27. Ng EW, Shima DT, Calias P, Cunningham ET Jr, Guyer DR, Adamis AP . Pegaptanib, a targeted anti-VEGF aptamer for ocular vascular disease. Nat Rev Drug Discov 2006; 5: 123–132.

    Article  CAS  Google Scholar 

  28. Yu Y, Lee P, Ke Y, Zhang Y, Yu Q, Lee J et al. A humanized anti-VEGF rabbit monoclonal antibody inhibits angiogenesis and blocks tumor growth in xenograft models. PLoS ONE 2010; 5: e9072.

    Article  Google Scholar 

  29. Ferla R, Bonomi M, Otvos L Jr, Surmacz E . Glioblastoma-derived leptin induces tube formation and growth of endothelial cells: comparison with VEGF effects. BMC Cancer 2011; 11: 303.

    Article  CAS  Google Scholar 

  30. Wang Y, Fei D, Vanderlaan M, Song A . Biological activity of bevacizumab, a humanized anti-VEGF antibody in vitro. Angiogenesis 2004; 7: 335–345.

    Article  CAS  Google Scholar 

  31. Jain RK . Antiangiogenic therapy for cancer: current and emerging concepts. Oncology (Williston Park) 2005; 19: 7–16.

    Google Scholar 

  32. Gerber HP, Wu X, Yu L, Wiesmann C, Liang XH, Lee CV et al. Mice expressing a humanized form of VEGF-A may provide insights into the safety and efficacy of anti-VEGF antibodies. Proc Natl Acad Sci USA 2007; 104: 3478–3483.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the National Sciences Fund (Nos. 31370938 and 81272528) and the National High Technology Research and Development Program (863 Program, No. 2012AA02A302).

Author information

Authors and Affiliations

Authors

Additional information

Supplementary Information accompanies the paper on Cellular & Molecular Immunology's website. (http://www.nature.com/cmi).

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, J., Wang, Q., Qiao, C. et al. Potent anti-angiogenesis and anti-tumor activity of a novel human anti-VEGF antibody, MIL60. Cell Mol Immunol 11, 285–293 (2014). https://doi.org/10.1038/cmi.2014.6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/cmi.2014.6

Keywords

This article is cited by

Search

Quick links