Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Depletion and dysfunction of Vγ2Vδ2 T cells in HIV disease: mechanisms, impacts and therapeutic implications

A Corrigendum to this article was published on 04 May 2013

Abstract

Infection with human immunodeficiency virus (HIV) disrupts the balance among γδ T cell subsets, with increasing Vδ1+ cells and substantial depletion of circulating Vδ2+ cells. Depletion is an indirect effect of HIV in CD4-negative Vδ2 cells, but is specific for phosphoantigen-responsive subpopulations identified by the Vγ2-Jγ1.2 (also called Vγ9-JγP) T cell receptor rearrangement. The extent of cell loss and recovery is related closely to clinical status, with highest levels of functional Vδ2 cells present in virus controllers (undetectable viremia in the absence of antiretroviral therapy). We review the mechanisms and clinical consequences for Vδ2 cell depletion in HIV disease. We address the question of whether HIV-mediated Vδ2 cell depletion, despite being an indirect effect of infection, is an important part of the immune evasion strategy for this virus. The important roles for Vδ2 cells, as effectors and immune regulators, identify key mechanisms affected by HIV and show the strong relationships between Vδ2 cell loss and immunodeficiency disease. This field is moving toward immune therapies based on targeting Vδ2 cells and we now have clear goals and expectations to guide interventional clinical trials.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Burns JM Jr, Flaherty PR, Nanavati P, Weidanz WP . Protection against plasmodium chabaudi malaria induced by immunization with apical membrane antigen 1 and merozoite surface protein 1 in the absence of gamma interferon or interleukin-4. Infect Immun 2004; 72: 5605–5612.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Havlir DV, Ellner JJ, Chervenak KA, Boom WH . Selective expansion of human gamma delta T cells by monocytes infected with live Mycobacterium tuberculosis. J Clin Invest 1991; 87: 729–733.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Havlir DV, Wallis RS, Boom WH, Daniel TM, Chervenak K, Ellner JJ . Human immune response to Mycobacterium tuberculosis antigens. Infect Immun 1991; 59: 665–670.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Poccia F, Boullier S, Lecoeur H, Cochet M, Poquet Y, Colizzi V et al. Peripheral V gamma 9/V delta 2 T cell deletion and anergy to nonpeptidic mycobacterial antigens in asymptomatic HIV-1-infected persons. J Immunol 1996; 157: 449–461.

    CAS  PubMed  Google Scholar 

  5. de Rosa SC, Mitra DK, Watanabe N, Herzenberg LA, Roederer M . Vdelta1 and Vdelta2 gammadelta T cells express distinct surface markers and might be developmentally distinct lineages. J Leukoc Biol 2001; 70: 518–526.

    CAS  PubMed  Google Scholar 

  6. Autran B, Triebel F, Katlama C, Rozenbaum W, Hercend T, Debre P . T cell receptor gamma/delta+ lymphocyte subsets during HIV infection. Clin Exp Immunol 1989; 75: 206–210.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Hermier F, Comby E, Delaunay A, Petitjean J, Favennec L, Bazin C et al. Decreased blood TcR gamma delta+ lymphocytes in AIDS and p24-antigenemic HIV-1-infected patients. Clin Immunol Immunopathol 1993; 69: 248–250.

    Article  CAS  PubMed  Google Scholar 

  8. Fenoglio D, Poggi A, Catellani S, Battaglia F, Ferrera A, Setti M et al. Vdelta1 T lymphocytes producing IFN-gamma and IL-17 are expanded in HIV-1-infected patients and respond to Candida albicans. Blood 2009; 113; 6611–6618.

    Article  CAS  PubMed  Google Scholar 

  9. Li H, Peng H, Ma P, Ruan Y, Su B, Ding X et al. Association between Vgamma2Vdelta2 T cells and disease progression after infection with closely related strains of HIV in China. Clin Infect Dis 2008; 46: 1466–1472.

    Article  CAS  PubMed  Google Scholar 

  10. Cummings JS, Cairo C, Armstrong C, Davis CE, Pauza CD . Impacts of HIV infection on Vgamma2Vdelta2 T cell phenotype and function: a mechanism for reduced tumor immunity in AIDS. J Leukoc Biol 2008; 84: 371–379.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Boullier S, Poquet Y, Debord T, Fournie JJ, Gougeon ML . Regulation by cytokines (IL-12, IL-15, IL-4 and IL-10) of the Vgamma9Vdelta2 T cell response to mycobacterial phosphoantigens in responder and anergic HIV-infected persons. Eur J Immunol 1999; 29: 90–99.

    Article  CAS  PubMed  Google Scholar 

  12. Enders PJ, Yin C, Martini F, Evans PS, Propp N, Poccia F et al. HIV-mediated gammadelta T cell depletion is specific for Vgamma2+ cells expressing the Jgamma1.2 segment. AIDS Res Hum Retroviruses 2003; 19: 21–29.

    Article  CAS  PubMed  Google Scholar 

  13. Sandberg JK, Fast NM, Palacios EH, Fennelly G, Dobroszycki J, Palumbo P et al. Selective loss of innate CD4(+) V alpha 24 natural killer T cells in human immunodeficiency virus infection. J Virol 2002; 76: 7528–7534.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Li H, Pauza CD . HIV envelope-mediated, CCR5/alpha4beta7-dependent killing of CD4-negative gammadelta T cells which are lost during progression to AIDS. Blood 2011; 118: 5824–5831.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Harris LD, Klatt NR, Vinton C, Briant JA, Tabb B, Ladell K et al. Mechanisms underlying gammadelta T-cell subset perturbations in SIV-infected Asian rhesus macaques. Blood 2010; 116: 4148–4157.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Wallace M, Scharko AM, Pauza CD, Fisch P, Imaoka K, Kawabata S et al. Functional gamma delta T-lymphocyte defect associated with human immunodeficiency virus infections. Mol Med 1997; 3: 60–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Martini F et al. Acute human immunodeficiency virus replication causes a rapid and persistent impairment of Vgamma9Vdelta2 T cells in chronically infected patients undergoing structured treatment interruption. J Infect Dis 2002; 186: 847–850.

    Article  PubMed  Google Scholar 

  18. Imlach S, Leen C, Bell JE, Simmonds P . Phenotypic analysis of peripheral blood gammadelta T lymphocytes and their targeting by human immunodeficiency virus type 1 in vivo. Virology 2003; 305: 415–427.

    Article  CAS  PubMed  Google Scholar 

  19. Medders KE, Sejbuk NE, Maung R, Desai MK, Kaul M . Activation of p38 MAPK is required in monocytic and neuronal cells for HIV glycoprotein 120-induced neurotoxicity. J Immunol 2010; 185: 4883–4895.

    Article  CAS  PubMed  Google Scholar 

  20. Fiala M, Murphy T, MacDougall J, Yang W, Luque A, Iruela-Arispe L et al. HAART drugs induce mitochondrial damage and intercellular gaps and gp120 causes apoptosis. Cardiovasc Toxicol 2004; 4: 327–337.

    Article  CAS  PubMed  Google Scholar 

  21. Vlahakis SR, Villasis-Keever A, Gomez TS, Bren GD, Paya CV . Human immunodeficiency virus-induced apoptosis of human hepatocytes via CXCR4. J Infect Dis 2003; 188: 1455–1460.

    Article  CAS  PubMed  Google Scholar 

  22. Vashistha H, Husain M, Kumar D, Singhal PC . Tubular cell HIV-1 gp120 expression induces caspase 8 activation and apoptosis. Ren Fail 2009; 31: 303–312.

    Article  CAS  PubMed  Google Scholar 

  23. Kanmogne GD, Primeaux C, Grammas P . Induction of apoptosis and endothelin-1 secretion in primary human lung endothelial cells by HIV-1 gp120 proteins. Biochem Biophys Res Commun 2005; 333: 1107–1115.

    Article  CAS  PubMed  Google Scholar 

  24. Lin H, Chen W, Luo L, Wu C, Wang Q, Liu Y . Cytotoxic effect of HIV-1 gp120 on primary cultured human retinal capillary endothelial cells. Mol Vis 2011; 17: 3450–3457.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Glatzel A, Wesch D, Schiemann F, Brandt E, Janssen O, Kabelitz D . Patterns of chemokine receptor expression on peripheral blood gamma delta T lymphocytes: strong expression of CCR5 is a selective feature of V delta 2/V gamma 9 gamma delta T cells. J Immunol 2002; 168: 4920–4929.

    Article  CAS  PubMed  Google Scholar 

  26. Trkola A, Dragic T, Arthos J, Binley JM, Olson WC, Allaway GP et al. CD4-dependent, antibody-sensitive interactions between HIV-1 and its co-receptor CCR-5. Nature 1996; 384: 184–187.

    Article  CAS  PubMed  Google Scholar 

  27. Wu L, Gerard NP, Wyatt R, Choe H, Parolin C, Ruffing N et al. CD4-induced interaction of primary HIV-1 gp120 glycoproteins with the chemokine receptor CCR-5. Nature 1996; 384: 179–183.

    Article  CAS  PubMed  Google Scholar 

  28. Arthos J, Cicala C, Martinelli E, Macleod K, van Ryk D, Wei D et al. HIV-1 envelope protein binds to and signals through integrin alpha4beta7, the gut mucosal homing receptor for peripheral T cells. Nat Immunol 2008; 9: 301–309.

    Article  CAS  PubMed  Google Scholar 

  29. Algeciras-Schimnich A, Vlahakis SR, Villasis-Keever A, Gomez T, Heppelmann CJ, Bou G et al. CCR5 mediates Fas- and caspase-8 dependent apoptosis of both uninfected and HIV infected primary human CD4 T cells. AIDS 2002; 16: 1467–1478.

    Article  CAS  PubMed  Google Scholar 

  30. Choi WS, Eom DS, Han BS, Kim WK, Han BH, Choi EJ et al. Phosphorylation of p38 MAPK induced by oxidative stress is linked to activation of both caspase-8- and -9-mediated apoptotic pathways in dopaminergic neurons. J Biol Chem 2004; 279: 20451–20460.

    Article  CAS  PubMed  Google Scholar 

  31. Schrantz N, Bourgeade MF, Mouhamad S, Leca G, Sharma S, Vazquez A . p38-mediated regulation of an Fas-associated death domain protein-independent pathway leading to caspase-8 activation during TGFbeta-induced apoptosis in human Burkitt lymphoma B cells BL41. Mol Biol Cell 2001; 12: 3139–3151.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Moir S, Chun TW, Fauci AS . Pathogenic mechanisms of HIV disease. Annu Rev Pathol 2011; 6: 223–248.

    Article  CAS  PubMed  Google Scholar 

  33. Li H, Pauza CD . The alpha4beta7 integrin binds HIV envelope but does not mediate bystander killing of gammadelta T cells. Blood 2012; 120: 698–699.

    Article  CAS  PubMed  Google Scholar 

  34. Miura T, Brumme CJ, Brockman MA, Brumme ZL, Pereyra F, Block BL et al. HLA-associated viral mutations are common in human immunodeficiency virus type 1 elite controllers. J Virol 2009; 83: 3407–3412.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Chen H, Ndhlovu ZM, Liu D, Porter LC, Fang JW, Darko S et al. TCR clonotypes modulate the protective effect of HLA class I molecules in HIV-1 infection. Nat Immunol 2012; 13: 691–700.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. De Maria A, Ferrazin A, Ferrini S, Ciccone E, Terragna A, Moretta L . Selective increase of a subset of T cell receptor gamma delta T lymphocytes in the peripheral blood of patients with human immunodeficiency virus type 1 infection. J Infect Dis 1992; 165: 917–919

    Article  CAS  PubMed  Google Scholar 

  37. Hinz T, Wesch D, Friese K, Reckziegel A, Arden B, Kabelitz D . T cell receptor gamma delta repertoire in HIV-1-infected individuals. Eur J Immunol 1994; 24: 3044–3049.

    Article  CAS  PubMed  Google Scholar 

  38. Wesch D, Hinz T, Kabelitz D . Analysis of the TCR Vgamma repertoire in healthy donors and HIV-1-infected individuals. Int Immunol 1998; 10: 1067–1075.

    Article  CAS  PubMed  Google Scholar 

  39. Bordon J, Evans PS, Propp N, Davis CE Jr, Redfield RR, Pauza CD . Association between longer duration of HIV-suppressive therapy and partial recovery of the V gamma 2 T cell receptor repertoire. J Infect Dis 2004; 189: 1482–1486.

    Article  CAS  PubMed  Google Scholar 

  40. Hebbeler AM, Propp N, Cairo C, Li H, Cummings JS, Jacobson LP et al. Failure to restore the Vgamma2-Jgamma1.2 repertoire in HIV-infected men receiving highly active antiretroviral therapy (HAART). Clin Immunol 2008; 128: 349–357.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Sajadi MM, Heredia A, Le N, Constantine NT, Redfield RR . HIV-1 natural viral suppressors: control of viral replication in the absence of therapy. AIDS 2007; 21: 517–519.

    CAS  PubMed  Google Scholar 

  42. Riedel DJ, Sajadi MM, Armstrong CL, Cummings JS, Cairo C, Redfield RR et al. Natural viral suppressors of HIV-1 have a unique capacity to maintain gammadelta T cells. AIDS 2009; 23: 1955–1964.

    Article  CAS  PubMed  Google Scholar 

  43. Cairo C, Armstrong CL, Cummings JS, Deetz CO, Tan M, Lu C et al. Impact of age, gender, and race on circulating gammadelta T cells. Hum Immunol 2010; 71: 968–975.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Pauza CD, Riedel DJ, Gilliam BL, Redfield RR . Targeting gammadelta T cells for immunotherapy of HIV disease. Future Virol 2011; 6: 73–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Boudova S, Li H, Sajadi MM, Redfield RR, Pauza CD . Impact of persistent HIV replication on CD4 negative Vgamma2Vdelta2 T cells. J Infect Dis 2012; 205: 1448–1455.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Cibotti R, Cabaniols JP, Pannetier C, Delarbre C, Vergnon I, Kanellopoulos JM et al. Public and private V beta T cell receptor repertoires against hen egg white lysozyme (HEL) in nontransgenic versus HEL transgenic mice. J Exp Med 1994; 180: 861–872.

    Article  CAS  PubMed  Google Scholar 

  47. Autran B, Carcelain G, Li TS, Blanc C, Mathez D, Tubiana R et al. Positive effects of combined antiretroviral therapy on CD4+ T cell homeostasis and function in advanced HIV disease. Science 1997; 277: 112–116.

    Article  CAS  PubMed  Google Scholar 

  48. Douek DC, McFarland RD, Keiser PH, Gage EA, Massey JM, Haynes BF et al. Changes in thymic function with age and during the treatment of HIV infection. Nature 1998; 396: 690–695.

    Article  CAS  PubMed  Google Scholar 

  49. Gorochov G, Neumann AU, Kereveur A, Parizot C, Li T, Katlama C et al. Perturbation of CD4+ and CD8+ T-cell repertoires during progression to AIDS and regulation of the CD4+ repertoire during antiviral therapy. Nat Med 1998; 4: 215–221.

    Article  CAS  PubMed  Google Scholar 

  50. Conti L, Casetti R, Cardone M, Varano B, Martino A, Belardelli F et al. Reciprocal activating interaction between dendritic cells and pamidronate-stimulated gammadelta T cells: role of CD86 and inflammatory cytokines. J Immunol 2005; 174: 252–260.

    Article  CAS  PubMed  Google Scholar 

  51. Devilder MC, Maillet S, Bouyge-Moreau I, Donnadieu E, Bonneville M, Scotet E . Potentiation of antigen-stimulated V gamma 9V delta 2 T cell cytokine production by immature dendritic cells (DC) and reciprocal effect on DC maturation. J Immunol 2006; 176: 1386–1393.

    Article  CAS  PubMed  Google Scholar 

  52. Maniar A, Zhang X, Lin W, Gastman BR, Pauza CD, Strome SE et al. Human gammadelta T lymphocytes induce robust NK cell-mediated antitumor cytotoxicity through CD137 engagement. Blood 2010; 116: 1726–1733.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Brunetta E, Hudspeth KL, Mavilio D . Pathologic natural killer cell subset redistribution in HIV-1 infection: new insights in pathophysiology and clinical outcomes. J Leukoc Biol 2010; 88: 1119–1130.

    Article  CAS  PubMed  Google Scholar 

  54. Castella B, Riganti C, Fiore F, Pantaleoni F, Canepari ME, Peola S et al. Immune modulation by zoledronic acid in human myeloma: an advantageous cross-talk between Vgamma9Vdelta2 T cells, alphabeta CD8+ T cells, regulatory T cells, and dendritic cells. J Immunol 2011; 187: 1578–1590.

    Article  CAS  PubMed  Google Scholar 

  55. Eberl M, Roberts GW, Meuter S, Williams JD, Topley N, Moser B . A rapid crosstalk of human gammadelta T cells and monocytes drives the acute inflammation in bacterial infections. PLoS Pathog 2009; 5: e1000308.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Li H, Luo K, Pauza CD . TNF-alpha is a positive regulatory factor for human Vgamma2 Vdelta2 T cells. J Immunol 2008; 181: 7131–7137.

    Article  CAS  PubMed  Google Scholar 

  57. Poccia F, Cipriani B, Vendetti S, Colizzi V, Poquet Y, Battistini L et al. CD94/NKG2 inhibitory receptor complex modulates both anti-viral and anti-tumoral responses of polyclonal phosphoantigen-reactive V gamma 9V delta 2 T lymphocytes. J Immunol 1997; 159: 6009–6017.

    CAS  PubMed  Google Scholar 

  58. Tikhonov I, Deetz CO, Paca R, Berg S, Lukyanenko V, Lim JK et al. Human Vgamma2Vdelta2 T cells contain cytoplasmic RANTES. Int Immunol 2006; 18: 1243–1251.

    Article  CAS  PubMed  Google Scholar 

  59. Lehner T, Wang Y, Whittall T, Seidl T . Innate immunity and HIV-1 infection. Adv Dent Res 2011; 23: 19–22.

    Article  CAS  PubMed  Google Scholar 

  60. Cipriani B, Borsellino G, Poccia F, Placido R, Tramonti D, Bach S et al. Activation of C-C beta-chemokines in human peripheral blood gammadelta T cells by isopentenyl pyrophosphate and regulation by cytokines. Blood 2000; 95: 39–47.

    CAS  PubMed  Google Scholar 

  61. Poccia F, Battistini L, Cipriani B, Mancino G, Martini F, Gougeon ML et al. Phosphoantigen-reactive Vgamma9Vdelta2 T lymphocytes suppress in vitro human immunodeficiency virus type 1 replication by cell-released antiviral factors including CC chemokines. J Infect Dis 1999; 180: 858–861.

    Article  CAS  PubMed  Google Scholar 

  62. Caccamo N, la Mendola C, Orlando V, Meraviglia S, Todaro M, Stassi G et al. Differentiation, phenotype, and function of interleukin-17-producing human Vgamma9Vdelta2 T cells. Blood 2011; 118: 129–138.

    Article  CAS  PubMed  Google Scholar 

  63. Bansal RR, Mackay CR, Moser B, Eberl M . IL-21 enhances the potential of human gammadelta T cells to provide B-cell help. Eur J Immunol 2012; 42: 110–119.

    Article  CAS  PubMed  Google Scholar 

  64. Vermijlen D, Brouwer M, Donner C, Liesnard C, Tackoen M, van Rysselberge M et al. Human cytomegalovirus elicits fetal gammadelta T cell responses in utero. J Exp Med 2010; 207: 807–821.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Dechanet J, Merville P, Lim A, Retière C, Pitard V, Lafarge X et al. Implication of gammadelta T cells in the human immune response to cytomegalovirus. J Clin Invest 1999; 103: 1437–1449.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Dechanet J, Merville P, Bergé F, Bone-Mane G, Taupin JL, Michel P et al. Major expansion of gammadelta T lymphocytes following cytomegalovirus infection in kidney allograft recipients. J Infect Dis 1999; 179: 1–8.

    Article  CAS  PubMed  Google Scholar 

  67. Tu W, Zheng J, Liu Y, Sia SF, Liu M, Qin G et al. The aminobisphosphonate pamidronate controls influenza pathogenesis by expanding a gammadelta T cell population in humanized mice. J Exp Med 2011; 208: 1511–1522.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Qin G, Mao H, Zheng J, Sia SF, Liu Y, Chan PL et al. Phosphoantigen-expanded human gammadelta T cells display potent cytotoxicity against monocyte-derived macrophages infected with human and avian influenza viruses. J Infect Dis 2009; 200: 858–865.

    Article  CAS  PubMed  Google Scholar 

  69. Jameson JM, Cruz J, Costanzo A, Terajima M, Ennis FA . A role for the mevalonate pathway in the induction of subtype cross-reactive immunity to influenza A virus by human gammadelta T lymphocytes. Cell Immunol 2010; 264: 71–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Fausther-Bovendo H, Wauquier N, Cherfils-Vicini J, Cremer I, Debré P, Vieillard V . NKG2C is a major triggering receptor involved in the V[delta]1 T cell-mediated cytotoxicity against HIV-infected CD4 T cells. AIDS 2008; 22: 217–226.

    Article  CAS  PubMed  Google Scholar 

  71. Hudspeth K, Fogli M, Correia DV, Mikulak J, Roberto A, Della Bella S et al. Engagement of NKp30 on Vdelta1 T cells induces the production of CCL3, CCL4, and CCL5 and suppresses HIV-1 replication. Blood 2012; 119: 4013–4016.

    Article  CAS  PubMed  Google Scholar 

  72. Wallace M, Bartz SR, Chang WL, Mackenzie DA, Pauza CD, Malkovsky M . Gamma delta T lymphocyte responses to HIV. Clin Exp Immunol 1996; 103: 177–184.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Poccia F, Gougeon ML, Agrati C, Montesano C, Martini F, Pauza CD et al. Innate T-cell immunity in HIV infection: the role of Vgamma9Vdelta2 T lymphocytes. Curr Mol Med 2002; 2: 769–781.

    Article  CAS  PubMed  Google Scholar 

  74. Capietto AH, Martinet L, Fournie JJ . Stimulated gammadelta T cells increase the in vivo efficacy of trastuzumab in HER-2+ breast cancer. J Immunol 2011; 187: 1031–1038.

    Article  CAS  PubMed  Google Scholar 

  75. Couzi L, Pitard V, Sicard X, Garrigue I, Hawchar O, Merville P et al. Antibody-dependent anti-cytomegalovirus activity of human gammadelta T cells expressing CD16 (FcgammaRIIIa). Blood 2012; 119: 1418–1427.

    Article  CAS  PubMed  Google Scholar 

  76. Qin G, Liu Y, Zheng J, Xiang Z, Ng IH, Malik Peiris JS et al. Phenotypic and functional characterization of human gammadelta T-cell subsets in response to influenza A viruses. J Infect Dis 2012; 205: 1646–1653.

    Article  CAS  PubMed  Google Scholar 

  77. Alexander AA, Maniar A, Cummings JS, Hebbeler AM, Schulze DH, Gastman BR et al. Isopentenyl pyrophosphate-activated CD56+ {gamma}{delta} T lymphocytes display potent antitumor activity toward human squamous cell carcinoma. Clin Cancer Res 2008; 14: 4232–4240.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Fisch P, Malkovsky M, Braakman E, Sturm E, Bolhuis RL, Prieve A et al. Gamma/delta T cell clones and natural killer cell clones mediate distinct patterns of non-major histocompatibility complex-restricted cytolysis. J Exp Med 1990; 171: 1567–1579.

    Article  CAS  PubMed  Google Scholar 

  79. Engels EA, Biggar RJ, Hall HI, Cross H, Crutchfield A, Finch JL et al. Cancer risk in people infected with human immunodeficiency virus in the United States. Int J Cancer 2008; 123: 187–194.

    Article  CAS  PubMed  Google Scholar 

  80. Shiels MS, Engels EA . Increased risk of histologically defined cancer subtypes in human immunodeficiency virus-infected individuals: clues for possible immunosuppression-related or infectious etiology. Cancer 2012; 118: 4869–4876.

    Article  PubMed  Google Scholar 

  81. Biggar RJ, Engels EA, Frisch M, Goedert JJ . Risk of T-cell lymphomas in persons with AIDS. J Acquir Immune Defic Syndr 2001; 26: 371–376.

    Article  CAS  PubMed  Google Scholar 

  82. Lamb LS Jr, Musk P, Ye Z, van Rhee F, Geier SS, Tong JJ et al. Human gammadelta(+) T lymphocytes have in vitro graft vs leukemia activity in the absence of an allogeneic response. Bone Marrow Transplant 2001; 27: 601–606.

    Article  PubMed  Google Scholar 

  83. Meeh PF, King M, O'Brien RL, Muga S, Buckhalts P, Neuberg R et al. Characterization of the gammadelta T cell response to acute leukemia. Cancer Immunol Immunother 2006; 55: 1072–1080.

    Article  PubMed  Google Scholar 

  84. Poccia F, Gioia C, Martini F, Sacchi A, Piacentini P, Tempestilli M et al. Zoledronic acid and interleukin-2 treatment improves immunocompetence in HIV-infected persons by activating Vgamma9Vdelta2 T cells. AIDS 2009; 23: 555–565.

    Article  CAS  PubMed  Google Scholar 

  85. Poonia B, Pauza CD . Gamma delta T cells from HIV+ donors can be expanded in vitro by zoledronate/interleukin-2 to become cytotoxic effectors for antibody-dependent cellular cytotoxicity. Cytotherapy 2012; 14: 173–181.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

These studies were supported by Public Health Services grants AI068508 and CA142458 (CDP). BP was also supported by start-up funding from the Institute of Human Virology Faculty Development Program. The authors have no financial conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haishan Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, H., Chaudry, S., Poonia, B. et al. Depletion and dysfunction of Vγ2Vδ2 T cells in HIV disease: mechanisms, impacts and therapeutic implications. Cell Mol Immunol 10, 42–49 (2013). https://doi.org/10.1038/cmi.2012.50

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/cmi.2012.50

Keywords

This article is cited by

Search

Quick links