Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Defining the nature of human γδ T cells: a biographical sketch of the highly empathetic

Abstract

The elusive task of defining the character of γδ T cells has been an evolving process for immunologists since stumbling upon their existence during the molecular characterization of the α and β T cell receptor genes of their better understood brethren. Defying the categorical rules used to distinctly characterize lymphocytes as either innate or adaptive in nature, γδ T cells inhabit a hybrid world of their own. At opposing ends of the simplified spectrum of modes of antigen recognition used by lymphocytes, natural killer and αβ T cells are particularly well equipped to respond to the ‘missing self’ and the ‘dangerous non-self’, respectively. However, between these two reductive extremes, we are chronically faced with the challenge of making peace with the ‘safe non-self’ and dealing with the inevitable ‘distressed self’, and it is within this more complex realm γδ T cells excel thanks to their highly empathetic nature. This review gives an overview of the latest insights revealing the unfolding story of human γδ T cells, providing a biographical sketch of these unique lymphocytes in an attempt to capture the essence of their fundamental nature and events that influence their life trajectory. What hangs in their balance is their nuanced ability to differentiate the friends from the foe and the pathological from the benign to help us adapt swiftly and efficiently to life's many stresses.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Saito H, Kranz DM, Takagaki Y, Hayday AC, Eisen HN, Tonegawa S . A third rearranged and expressed gene in a clone of cytotoxic T lymphocytes. Nature 1984; 312: 36–40.

    Article  CAS  PubMed  Google Scholar 

  2. Shin S, El-Diwany R, Schaffert S, Adams EJ, Garcia KC, Pereira P et al. Antigen recognition determinants of gammadelta T cell receptors. Science 2005; 308: 252–255.

    Article  CAS  PubMed  Google Scholar 

  3. Yamashita S, Tanaka Y, Harazaki M, Mikami B, Minato N . Recognition mechanism of non-peptide antigens by human gammadelta T cells. Int Immunol 2003; 15: 1301–1307.

    Article  CAS  PubMed  Google Scholar 

  4. Li H, Lebedeva MI, Llera AS, Fields BA, Brenner MB, Mariuzza RA . Structure of the Vdelta domain of a human gammadelta T-cell antigen receptor. Nature 1998; 391: 502–506.

    Article  CAS  PubMed  Google Scholar 

  5. Shao L, Huang D, Wei H, Wang RC, Chen CY, Shen L et al. Expansion, reexpansion, and recall-like expansion of Vgamma2Vdelta2 T cells in smallpox vaccination and monkeypox virus infection. J Virol 2009; 83: 11959–11965.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Morita CT, Jin C, Sarikonda G, Wang H . Nonpeptide antigens, presentation mechanisms, and immunological memory of human Vgamma2Vdelta2 T cells: discriminating friend from foe through the recognition of prenyl pyrophosphate antigens. Immunol Rev 2007; 215: 59–76.

    Article  CAS  PubMed  Google Scholar 

  7. Chen ZW, Letvin NL . Adaptive immune response of Vgamma2Vdelta2 T cells: a new paradigm. Trends Immunol 2003; 24: 213–219.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Rey J, Veuillen C, Vey N, Bouabdallah R, Olive D . Natural killer and gammadelta T cells in haematological malignancies: enhancing the immune effectors. Trends Mol Med 2009; 15: 275–284.

    Article  CAS  PubMed  Google Scholar 

  9. Shafi S, Vantourout P, Wallace G, Antoun A, Vaughan R, Stanford M et al. An NKG2D-mediated human lymphoid stress surveillance response with high interindividual variation. Sci Transl Med 2011; 3: 113–124.

    Article  CAS  Google Scholar 

  10. Beetz S, Marischen L, Kabelitz D, Wesch D . Human gamma delta T cells: candidates for the development of immunotherapeutic strategies. Immunol Res 2007; 37: 97–111.

    Article  CAS  PubMed  Google Scholar 

  11. Wrobel P, Shojaei H, Schittek B, Gieseler F, Wollenberg B, Kalthoff H et al. Lysis of a broad range of epithelial tumour cells by human gamma delta T cells: involvement of NKG2D ligands and T-cell receptor- versus NKG2D-dependent recognition. Scand J Immunol 2007; 66: 320–328.

    Article  CAS  PubMed  Google Scholar 

  12. Fisch P, Meuer E, Pende D, Rothenfusser S, Viale O, Kock S et al. Control of B cell lymphoma recognition via natural killer inhibitory receptors implies a role for human Vgamma9/Vdelta2 T cells in tumor immunity. Eur J Immunol 1997; 27: 3368–3379.

    Article  CAS  PubMed  Google Scholar 

  13. Halary F, Peyrat MA, Champagne E, Lopez-Botet M, Moretta A, Moretta L et al. Control of self-reactive cytotoxic T lymphocytes expressing gamma delta T cell receptors by natural killer inhibitory receptors. Eur J Immunol 1997; 27: 2812–2821.

    Article  CAS  PubMed  Google Scholar 

  14. Moris A, Rothenfusser S, Meuer E, Hangretinger R, Fisch P . Role of gammadelta T cells in tumor immunity and their control by NK receptors. Microbes Infect 1999; 1: 227–234.

    Article  CAS  PubMed  Google Scholar 

  15. Barakonyi A, Kovacs KT, Miko E, Szereday L, Varga P, Szekeres-Bartho J . Recognition of nonclassical HLA class I antigens by gamma delta T cells during pregnancy. J Immunol 2002; 168: 2683–2688.

    Article  CAS  PubMed  Google Scholar 

  16. Brandes M, Willimann K, Moser B . Professional antigen-presentation function by human gammadelta T Cells. Science 2005; 309: 264–268.

    Article  CAS  PubMed  Google Scholar 

  17. Brandes M, Willimann K, Bioley G, Levy N, Eberl M, Luo M et al. Cross-presenting human gammadelta T cells induce robust CD8+ alphabeta T cell responses. Proc Natl Acad Sci USA 2009; 106: 2307–2312.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Karre K . How to recognize a foreign submarine. Immunol Rev 1997; 155: 5–9.

    Article  CAS  PubMed  Google Scholar 

  19. Kabelitz D, Marischen L, Oberg HH, Holtmeier W, Wesch D . Epithelial defence by gamma delta T cells. Int Arch Allergy Immunol 2005; 137: 73–81.

    Article  CAS  PubMed  Google Scholar 

  20. Su C, Jakobsen I, Gu X, Nei M . Diversity and evolution of T-cell receptor variable region genes in mammals and birds. Immunogenetics 1999; 50: 301–308.

    Article  CAS  PubMed  Google Scholar 

  21. Qu A, Brulc JM, Wilson MK, Law BF, Theoret JR, Joens LA et al. Comparative metagenomics reveals host specific metavirulomes and horizontal gene transfer elements in the chicken cecum microbiome. PLoS One 2008; 3: e2945.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Hoover WH, Miller TK . Rumen digestive physiology and microbial ecology. Vet Clin North Am Food Anim Pract 1991; 7: 311–325.

    Article  CAS  PubMed  Google Scholar 

  23. Ross JA, Scott A, Gardner IC . Bacterial localization in the caecum of the rabbit. Microbios 1987; 52: 51–63.

    CAS  PubMed  Google Scholar 

  24. Stevens CE, Hume ID . Contributions of microbes in vertebrate gastrointestinal tract to production and conservation of nutrients. Physiol Rev 1998; 78: 393–427.

    Article  CAS  PubMed  Google Scholar 

  25. Ismail AS, Severson KM, Vaishnava S, Behrendt CL, Yu X, Benjamin JL et al. Gammadelta intraepithelial lymphocytes are essential mediators of host-microbial homeostasis at the intestinal mucosal surface. Proc Natl Acad Sci USA 2011; 108: 8743–8748.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ismail AS, Behrendt CL, Hooper LV . Reciprocal interactions between commensal bacteria and gamma delta intraepithelial lymphocytes during mucosal injury. J Immunol 2009; 182: 3047–3054.

    Article  CAS  PubMed  Google Scholar 

  27. Chodaczek G, Papanna V, Zal MA, Zal T . Body-barrier surveillance by epidermal gammadelta TCRs. Nat Immunol 2012; 13: 272–282.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Jameson J, Havran WL . Skin gammadelta T-cell functions in homeostasis and wound healing. Immunol Rev 2007; 215: 114–122.

    Article  CAS  PubMed  Google Scholar 

  29. Jameson JM, Cauvi G, Witherden DA, Havran WL . A keratinocyte-responsive gamma delta TCR is necessary for dendritic epidermal T cell activation by damaged keratinocytes and maintenance in the epidermis. J Immunol 2004; 172: 3573–3579.

    Article  CAS  PubMed  Google Scholar 

  30. Boismenu R, Havran WL . Gammadelta T cells in host defense and epithelial cell biology. Clin Immunol Immunopathol 1998; 86: 121–133.

    Article  CAS  PubMed  Google Scholar 

  31. Havran WL, Chen Y, Boismenu R . Innate functions of epithelial gamma delta T cells. Adv Exp Med Biol 1998; 452: 29–35.

    Article  CAS  PubMed  Google Scholar 

  32. McVay LD, Carding SR . Generation of human gammadelta T-cell repertoires. Crit Rev Immunol 1999; 19: 431–460.

    CAS  PubMed  Google Scholar 

  33. Halary F, Pitard V, Dlubek D, Krzysiek R, de la Salle H, Merville P et al. Shared reactivity of V{delta}2(neg) {gamma}{delta} T cells against cytomegalovirus-infected cells and tumor intestinal epithelial cells. J Exp Med 2005; 201: 1567–1578.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Locke NR, Stankovic S, Funda DP, Harrison LC . TCR gamma delta intraepithelial lymphocytes are required for self-tolerance. J Immunol 2006; 176: 6553–6559.

    Article  CAS  PubMed  Google Scholar 

  35. Holtmeier W . Compartmentalization gamma/delta T cells and their putative role in mucosal immunity. Crit Rev Immunol 2003; 23: 473–488.

    Article  PubMed  Google Scholar 

  36. Hayday A, Gibbons D . Brokering the peace: the origin of intestinal T cells. Mucosal Immunol 2008; 1: 172–174.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Trejdosiewicz LK . Intestinal intraepithelial lymphocytes and lymphoepithelial interactions in the human gastrointestinal mucosa. Immunol Lett 1992; 32: 13–19.

    Article  CAS  PubMed  Google Scholar 

  38. Zocchi MR, Poggi A . Role of gammadelta T lymphocytes in tumor defense. Front Biosci 2004; 9: 2588–2604.

    Article  CAS  PubMed  Google Scholar 

  39. Maeurer MJ, Martin D, Walter W, Liu K, Zitvogel L, Halusczcak K et al. Human intestinal Vdelta1+ lymphocytes recognize tumor cells of epithelial origin. J Exp Med 1996; 183: 1681–1696.

    Article  CAS  PubMed  Google Scholar 

  40. Bhagat G, Naiyer AJ, Shah JG, Harper J, Jabri B, Wang TC et al. Small intestinal CD8+TCRgammadelta+NKG2A+ intraepithelial lymphocytes have attributes of regulatory cells in patients with celiac disease. J Clin Invest 2008; 118: 281–293.

    Article  CAS  PubMed  Google Scholar 

  41. Holtmeier W, Kabelitz D . gammadelta T cells link innate and adaptive immune responses. Chem Immunol Allergy 2005; 86: 151–183.

    Article  CAS  PubMed  Google Scholar 

  42. Groh V, Steinle A, Bauer S, Spies T . Recognition of stress-induced MHC molecules by intestinal epithelial gammadelta T cells. Science 1998; 279: 1737–1740.

    Article  CAS  PubMed  Google Scholar 

  43. Groh V, Rhinehart R, Secrist H, Bauer S, Grabstein KH, Spies T . Broad tumor-associated expression and recognition by tumor-derived gamma delta T cells of MICA and MICB. Proc Natl Acad Sci USA 1999; 96: 6879–6884.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Rincon-Orozco B, Kunzmann V, Wrobel P, Kabelitz D, Steinle A, Herrmann T Activation of V gamma 9V delta 2 T cells by NKG2D. J Immunol 2005; 175: 2144–2151.

    Article  CAS  PubMed  Google Scholar 

  45. Vivier E, Tomasello E, Paul P . Lymphocyte activation via NKG2D: towards a new paradigm in immune recognition? Curr Opin Immunol 2002; 14: 306–311.

    Article  CAS  PubMed  Google Scholar 

  46. Xu B, Pizarro JC, Holmes MA, McBeth C, Groh V, Spies T et al. Crystal structure of a gammadelta T-cell receptor specific for the human MHC class I homolog MICA. Proc Natl Acad Sci USA 2011; 108: 2414–2419.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Haig NA, Guan Z, Li D, McMichael A, Raetz CR, Xu XN . Identification of self-lipids presented by CD1c and CD1d proteins. J Biol Chem 2011; 286: 37692–37701.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Spada FM, Grant EP, Peters PJ, Sugita M, Melian A, Leslie DS et al. Self-recognition of CD1 by gamma/delta T cells: implications for innate immunity. J Exp Med 2000; 191: 937–948.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Willcox CR, Pitard V, Netzer S, Couzi L, Salim M, Silberzahn T, et al. Cytomegalovirus and tumor stress surveillance by binding of a human gammadelta T cell antigen receptor to endothelial protein C receptor. Nat Immunol 2012; 13: 872–879.

    Article  CAS  PubMed  Google Scholar 

  50. Montes R, Puy C, Molina E, Hermida J . Is EPCR a multi-ligand receptor? Pros and cons. Thromb Haemost 2012; 107: 815–826.

    Article  CAS  PubMed  Google Scholar 

  51. Mincheva-Nilsson L, Hammarstrom S, Hammarstrom ML . Human decidual leukocytes from early pregnancy contain high numbers of gamma delta+ cells and show selective down-regulation of alloreactivity. J Immunol 1992; 149: 2203–2211.

    CAS  PubMed  Google Scholar 

  52. Bonney EA, Pudney J, Anderson DJ, Hill JA . Gamma-delta T cells in midgestation human placental villi. Gynecol Obstet Invest 2000; 50: 153–157.

    Article  CAS  PubMed  Google Scholar 

  53. Nagaeva O, Jonsson L, Mincheva-Nilsson L . Dominant IL-10 and TGF-beta mRNA expression in gamma delta T cells of human early pregnancy decidua suggests immunoregulatory potential. Am J Reprod Immunol 2002; 48: 9–17.

    Article  PubMed  Google Scholar 

  54. Fan DX, Duan J, Li MQ, Xu B, Li DJ, Jin LP . The decidual gamma-delta T cells up-regulate the biological functions of trophoblasts via IL-10 secretion in early human pregnancy. Clin Immunol 2011; 141: 284–292.

    Article  CAS  PubMed  Google Scholar 

  55. Hayakawa S, Shiraishi H, Saitoh S, Satoh K . Decidua as a site of extrathymic V gamma I T-cell differentiation. Am J Reprod Immunol 1996; 35: 233–238.

    Article  CAS  PubMed  Google Scholar 

  56. Mincheva-Nilsson L, Kling M, Hammarstrom S, Nagaeva O, Sundqvist KG, Hammarstrom ML et al. Gamma delta T cells of human early pregnancy decidua: evidence for local proliferation, phenotypic heterogeneity, and extrathymic differentiation. J Immunol 1997; 159: 3266–3277.

    CAS  PubMed  Google Scholar 

  57. Meeusen E, Fox A, Brandon M, Lee CS . Activation of uterine intraepithelial gamma delta T cell receptor-positive lymphocytes during pregnancy. Eur J Immunol 1993; 23: 1112–1117.

    Article  CAS  PubMed  Google Scholar 

  58. Heyborne KD, Cranfill RL, Carding SR, Born WK, O'Brien RL . Characterization of gamma delta T lymphocytes at the maternal-fetal interface. J Immunol 1992; 149: 2872–2878.

    CAS  PubMed  Google Scholar 

  59. Barakoryi A, Miko E, Varga P, Szekeres-Bartho J . V-chain preference of gamma/delta T-cell receptors in peripheral blood during term labor. Am J Reprod Immunol 2008; 59: 201–205.

    Article  Google Scholar 

  60. Polgar B, Barakonyi A, Xynos I, Szekeres-Bartho J . The role of gamma/delta T cell receptor positive cells in pregnancy. Am J Reprod Immunol 1999; 41: 239–244.

    Article  CAS  PubMed  Google Scholar 

  61. Barakonyi A, Polgar B, Szekeres-Bartho J . The role of gamma/delta T-cell receptor-positive cells in pregnancy: part II. Am J Reprod Immunol 1999; 42: 83–87.

    CAS  PubMed  Google Scholar 

  62. Szereday L, Barakonyi A, Miko E, Varga P, Szekeres-Bartho J . gamma/delta T-cell subsets, NKG2A expression and apoptosis of V delta 2+ T cells in pregnant women with or without risk of premature pregnancy termination. Am J Reprod Immunol 2003; 50: 490–496.

    Article  PubMed  Google Scholar 

  63. Heyborne K, Fu YX, Nelson A, Farr A, O'Brien R, Born W . Recognition of trophoblasts by gamma delta T cells. J Immunol 1994; 153: 2918–2926.

    CAS  PubMed  Google Scholar 

  64. Wang H, Lee HK, Bukowski JF, Li H, Mariuzza RA, Chen ZW et al. Conservation of nonpeptide antigen recognition by rhesus monkey V gamma 2V delta 2 T cells. J Immunol 2003; 170: 3696–3706.

    Article  CAS  PubMed  Google Scholar 

  65. Tanaka Y, Morita CT, Tanaka Y, Nieves E, Brenner MB, Bloom BR . Natural and synthetic non-peptide antigens recognized by human gamma delta T cells. Nature 1995; 375: 155–158.

    Article  CAS  PubMed  Google Scholar 

  66. Jomaa H, Feurle J, Luhs K, Kunzmann V, Tony HP, Herderich M et al. Vgamma9/Vdelta2 T cell activation induced by bacterial low molecular mass compounds depends on the 1-deoxy-D-xylulose 5-phosphate pathway of isoprenoid biosynthesis. FEMS Immunol Med Microbiol 1999; 25: 371–378.

    CAS  PubMed  Google Scholar 

  67. Hintz M, Reichenberg A, Altincicek B, Bahr U, Gschwind RM, Kollas AK et al. Identification of (E)-4-hydroxy-3-methyl-but-2-enyl pyrophosphate as a major activator for human gammadelta T cells in Escherichia coli. FEBS Lett 2001; 509: 317–322.

    Article  CAS  PubMed  Google Scholar 

  68. Gober HJ, Kistowska M, Angman L, Jeno P, Mori L, de Libero G . Human T cell receptor gammadelta cells recognize endogenous mevalonate metabolites in tumor cells. J Exp Med 2003; 197: 163–168.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Bukowski JF, Morita CT, Brenner MB . Human gamma delta T cells recognize alkylamines derived from microbes, edible plants, and tea: implications for innate immunity. Immunity 1999; 11: 57–65.

    Article  CAS  PubMed  Google Scholar 

  70. Kunzmann V, Bauer E, Feurle J, Weissinger F, Tony HP, Wilhelm M . Stimulation of gammadelta T cells by aminobisphosphonates and induction of antiplasma cell activity in multiple myeloma. Blood 2000; 96: 384–392.

    CAS  PubMed  Google Scholar 

  71. Thompson K, Rogers MJ . Statins prevent bisphosphonate-induced gamma,delta-T-cell proliferation and activation in vitro. J Bone Miner Res 2004; 19: 278–288.

    Article  CAS  PubMed  Google Scholar 

  72. Thompson K, Rojas-Navea J, Rogers MJ . Alkylamines cause Vgamma9Vdelta2 T-cell activation and proliferation by inhibiting the mevalonate pathway. Blood 2006; 107: 651–654.

    Article  CAS  PubMed  Google Scholar 

  73. Green AE, Lissina A, Hutchinson SL, Hewitt RE, Temple B, James D et al. Recognition of nonpeptide antigens by human V gamma 9V delta 2 T cells requires contact with cells of human origin. Clin Exp Immunol 2004; 136: 472–482.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Scotet E, Martinez LO, Grant E, Barbaras R, Jeno P, Guiraud M et al. Tumor recognition following Vgamma9Vdelta2 T cell receptor interactions with a surface F1-ATPase-related structure and apolipoprotein A-I. Immunity 2005; 22: 71–80.

    Article  CAS  PubMed  Google Scholar 

  75. Fu Y, Hou Y, Fu C, Gu M, Li C, Kong W et al. A novel mechanism of gamma/delta T-lymphocyte and endothelial activation by shear stress: the role of ecto-ATP synthase beta chain. Circ Res 2011; 108: 410–417.

    Article  CAS  PubMed  Google Scholar 

  76. Mookerjee-Basu J, Vantourout P, Martinez LO, Perret B, Collet X, Perigaud C et al. F1-adenosine triphosphatase displays properties characteristic of an antigen presentation molecule for Vgamma9Vdelta2 T cells. J Immunol 2010; 184: 6920–6928.

    Article  CAS  PubMed  Google Scholar 

  77. Chen H, He X, Wang Z, Wu D, Zhang H, Xu C et al. Identification of human T cell receptor gammadelta-recognized epitopes/proteins via CDR3delta peptide-based immunobiochemical strategy. J Biol Chem 2008; 283: 12528–12537.

    Article  CAS  PubMed  Google Scholar 

  78. Dai Y, Chen H, Mo C, Cui L, He W . Ectopically expressed human tumor biomarker MutS homologue 2 is a novel endogenous ligand that is recognized by human gammadelta t cells to induce innate anti-tumor/virus immunity. J Biol Chem 2012; 287: 16812–16819.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Mo C, Dai Y, Kang N, Cui L, He W . Ectopic expression of human MutS homologue 2 on renal carcinoma cells is induced by oxidative stress with interleukin-18 promotion via p38 mitogen-activated protein kinase (MAPK) and c-Jun N-terminal kinase (JNK) signaling pathways. J Biol Chem 2012; 287: 19242–19254.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Heinen CD, Cyr JL, Cook C, Punja N, Sakato M, Forties RA et al. Human MSH2 (hMSH2) protein controls ATP processing by hMSH2-hMSH6. J Biol Chem 2011; 286: 40287–40295.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Harly C, Guillaume Y, Nedellec S, Peigne CM, Monkkonen H, Monkkonen J et al. Key implication of CD277/Butyrophilin-3 (BTN3A) in cellular stress sensing by a major human gammadelta T cell subset. Blood 2012; 120: 2269–2279.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Rhodes DA, Stammers M, Malcherek G, Beck S, Trowsdale J . The cluster of BTN genes in the extended major histocompatibility complex. Genomics 2001; 71: 351–362.

    Article  CAS  PubMed  Google Scholar 

  83. Carding SR, Kyes S, Jenkinson EJ, Kingston R, Bottomly K, Owen JJ et al. Developmentally regulated fetal thymic and extrathymic T-cell receptor gamma delta gene expression. Genes Dev 1990; 4: 1304–1315.

    Article  CAS  PubMed  Google Scholar 

  84. McVay LD, Carding SR . Extrathymic origin of human gamma delta T cells during fetal development. J Immunol 1996; 157: 2873–2882.

    CAS  PubMed  Google Scholar 

  85. de Rosa SC, Andrus JP, Perfetto SP, Mantovani JJ, Herzenberg LA, Herzenberg LA et al. Ontogeny of gamma delta T cells in humans. J Immunol 2004; 172: 1637–1645.

    Article  CAS  PubMed  Google Scholar 

  86. Esin S, Shigematsu M, Nagai S, Eklund A, Wigzell H, Grunewald J . Different percentages of peripheral blood gamma delta+T cells in healthy individuals from different areas of the world. Scand J Immunol 1996; 43: 593–596.

    Article  CAS  PubMed  Google Scholar 

  87. Romagnani S . The increased prevalence of allergy and the hygiene hypothesis: missing immune deviation, reduced immune suppression, or both? Immunology 2004; 112: 352–363.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Garn H, Renz H . Epidemiological and immunological evidence for the hygiene hypothesis. Immunobiology 2007; 212: 441–452.

    Article  CAS  PubMed  Google Scholar 

  89. Hviid L, Akanmori BD, Loizon S, Kurtzhals JA, Ricke CH, Lim A et al. High frequency of circulating gamma delta T cells with dominance of the v(delta)1 subset in a healthy population. Int Immunol 2000; 12: 797–805.

    Article  CAS  PubMed  Google Scholar 

  90. Hviid L, Kurtzhals JA, Adabayeri V, Loizon S, Kemp K, Goka BQ et al. Perturbation and proinflammatory type activation of V delta 1+ gamma delta T cells in African children with Plasmodium falciparum malaria. Infect Immun 2001; 69: 3190–3196.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Ho M, Tongtawe P, Kriangkum J, Wimonwattrawatee T, Pattanapanyasat K, Bryant L et al. Polyclonal expansion of peripheral gamma delta T cells in human Plasmodium falciparum malaria. Infect Immun 1994; 62: 855–862.

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Vermijlen D, Brouwer M, Donner C, Liesnard C, Tackoen M, van Rysselberge M et al. Human cytomegalovirus elicits fetal gammadelta T cell responses in utero. J Exp Med 2010; 207: 807–821.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Orsini DL, Res PC, van Laar JM, Muller LM, Soprano AE, Kooy YM et al. A subset of V delta 1+ T cells proliferates in response to Epstein–Barr virus-transformed B cell lines in vitro. Scand J Immunol 1993; 38: 335–340.

    Article  CAS  PubMed  Google Scholar 

  94. Orsini DL, van Gils M, Kooy YM, Struyk L, Klein G, van den Elsen P et al. Functional and molecular characterization of B cell-responsive V delta 1+ gamma delta T cells. Eur J Immunol 1994; 24: 3199–3204.

    Article  CAS  PubMed  Google Scholar 

  95. Zheng NN, McElrath MJ, Sow PS, Mesher A, Hawes SE, Stern J et al. Association between peripheral gammadelta T-cell profile and disease progression in individuals infected with HIV-1 or HIV-2 in West Africa. J Acquir Immune Defic Syndr 2011; 57: 92–100.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Rossol R, Dobmeyer JM, Dobmeyer TS, Klein SA, Rossol S, Wesch D et al. Increase in Vdelta1+ gammadelta T cells in the peripheral blood and bone marrow as a selective feature of HIV-1 but not other virus infections. Br J Haematol 1998; 100: 728–734.

    Article  CAS  PubMed  Google Scholar 

  97. Oswald E, Fisch P, Jakob T, Bruckner-Tuderman L, Martin SF, Rensing-Ehl A . Reduced numbers of circulating gammadelta T cells in patients with bullous pemphigoid. Exp Dermatol 2009; 18: 991–993.

    Article  CAS  PubMed  Google Scholar 

  98. Andreu-Ballester JC, Amigo-Garcia V, Catalan-Serra I, Gil-Borras R, Ballester F, Almela-Quilis A et al. Deficit of gammadelta T lymphocytes in the peripheral blood of patients with Crohn's disease. Dig Dis Sci 2011; 56: 2613–2622.

    Article  PubMed  Google Scholar 

  99. Kiladjian JJ, Visentin G, Viey E, Chevret S, Eclache V, Stirnemann J et al. Activation of cytotoxic T-cell receptor gammadelta T lymphocytes in response to specific stimulation in myelodysplastic syndromes. Haematologica 2008; 93: 381–389.

    Article  CAS  PubMed  Google Scholar 

  100. Chauhan SK, Tripathy NK, Sinha N, Nityanand S . T-cell receptor repertoire of circulating gamma delta T-cells in Takayasu's arteritis. Clin Immunol 2006; 118: 243–249.

    Article  CAS  PubMed  Google Scholar 

  101. Giacomelli R, Matucci-Cerinic M, Cipriani P, Ghersetich I, Lattanzio R, Pavan A et al. Circulating Vdelta1+ T cells are activated and accumulate in the skin of systemic sclerosis patients. Arthritis Rheum 1998; 41: 327–334.

    Article  CAS  PubMed  Google Scholar 

  102. Gan YH, Lui SS, Malkovsky M . Differential susceptibility of naive and activated human gammadelta T cells to activation-induced cell death by T-cell receptor cross-linking. Mol Med 2001; 7: 636–643.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Gan YH, Wallace M, Malkovsky M . Fas-dependent, activation-induced cell death of gammadelta cells. J Biol Regul Homeost Agents 2001; 15: 277–285.

    CAS  PubMed  Google Scholar 

  104. Kabelitz D . Effector functions and control of human gammadelta T-cell activation. Microbes Infect 1999; 1: 255–261.

    Article  CAS  PubMed  Google Scholar 

  105. Kelsen J, Dige A, Schwindt H, D'Amore F, Pedersen FS, Agnholt J et al. Infliximab induces clonal expansion of gammadelta-T cells in Crohn's disease: a predictor of lymphoma risk? PLoS One 2011; 6: e17890.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Giardina AR, Accardo-Palumbo A, Ciccia F, Ferrante A, Principato A, Impastato R et al. Blocking TNF in vitro with infliximab determines the inhibition of expansion and interferon gamma production of Vgamma9/Vdelta2 T lymphocytes from patients with active rheumatoid arthritis. A role in the susceptibility to tuberculosis? Reumatismo 2009; 61: 21–26.

    CAS  PubMed  Google Scholar 

  107. Accardo-Palumbo A, Giardina AR, Ciccia F, Ferrante A, Principato A, Impastato R et al. Phenotype and functional changes of Vgamma9/Vdelta2 T lymphocytes in Behcet's disease and the effect of infliximab on Vgamma9/Vdelta2 T cell expansion, activation and cytotoxicity. Arthritis Res Ther 2010; 12: R109.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Kalyan S, Wesch D, Kabelitz D . Aminobisphosphonates and Toll-like receptor ligands: recruiting Vgamma9Vdelta2 T cells for the treatment of hematologic malignancy. Curr Med Chem 2011; 18: 5206–5216.

    Article  CAS  PubMed  Google Scholar 

  109. Kabelitz D . Human gammadelta T lymphocytes for immunotherapeutic strategies against cancer. F1000 Med Rep 2010; 2: 45.

    Article  PubMed  PubMed Central  Google Scholar 

  110. Kabelitz D, Wesch D, He W . Perspectives of gammadelta T cells in tumor immunology. Cancer Res 2007; 67: 5–8.

    Article  CAS  PubMed  Google Scholar 

  111. Martinet L, Poupot R, Fournie JJ . Pitfalls on the roadmap to gammadelta T cell-based cancer immunotherapies. Immunol Lett 2009; 124: 1–8.

    Article  CAS  PubMed  Google Scholar 

  112. Lopez RD . Human gammadelta-T cells in adoptive immunotherapy of malignant and infectious diseases. Immunol Res 2002; 26: 207–221.

    Article  CAS  PubMed  Google Scholar 

  113. Cairo C, Armstrong CL, Cummings JS, Deetz CO, Tan M, Lu C et al. Impact of age, gender, and race on circulating gammadelta T cells. Hum Immunol 2010; 71: 968–975.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Caccamo N, Dieli F, Wesch D, Jomaa H, Eberl M . Sex-specific phenotypical and functional differences in peripheral human Vgamma9/Vdelta2 T cells. J Leukoc Biol 2006; 79: 663–666.

    Article  CAS  PubMed  Google Scholar 

  115. Michishita Y, Hirokawa M, Guo YM, Abe Y, Liu J, Ubukawa K et al. Age-associated alteration of gammadelta T-cell repertoire and different profiles of activation-induced death of Vdelta1 and Vdelta2 T cells. Int J Hematol 2011; 94: 230–240.

    Article  CAS  PubMed  Google Scholar 

  116. Anane LH, Edwards KM, Burns VE, Zanten JJ, Drayson MT, Bosch JA . Phenotypic characterization of gammadelta T cells mobilized in response to acute psychological stress. Brain Behav Immun 2010; 24: 608–614.

    Article  CAS  PubMed  Google Scholar 

  117. Dieli F, Poccia F, Lipp M, Sireci G, Caccamo N, di Sano C et al. Differentiation of effector/memory Vdelta2 T cells and migratory routes in lymph nodes or inflammatory sites. J Exp Med 2003; 198: 391–397.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Percival SS, Bukowski JF, Milner J . Bioactive food components that enhance gammadelta T cell function may play a role in cancer prevention. J Nutr 2008; 138: 1–4.

    Article  CAS  PubMed  Google Scholar 

  119. Holderness J, Schepetkin IA, Freedman B, Kirpotina LN, Quinn MT, Hedges JF et al. Polysaccharides isolated from Acai fruit induce innate immune responses. PLoS One 2011; 6: e17301.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Graff JC, Kimmel EM, Freedman B, Schepetkin IA, Holderness J, Quinn MT et al. Polysaccharides derived from Yamoa (Funtumia elastica) prime gammadelta T cells in vitro and enhance innate immune responses in vivo. Int Immunopharmacol 2009; 9: 1313–1322.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Holderness J, Jackiw L, Kimmel E, Kerns H, Radke M, Hedges JF et al. Select plant tannins induce IL-2Ralpha up-regulation and augment cell division in gammadelta T cells. J Immunol 2007; 179: 6468–6478.

    Article  CAS  PubMed  Google Scholar 

  122. Daughenbaugh KF, Holderness J, Graff JC, Hedges JF, Freedman B, Graff JW et al. Contribution of transcript stability to a conserved procyanidin-induced cytokine response in gammadelta T cells. Genes Immun 2011; 12: 378–389.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Rowe CA, Nantz MP, Bukowski JF, Percival SS . Specific formulation of Camellia sinensis prevents cold and flu symptoms and enhances gamma,delta T cell function: a randomized, double-blind, placebo-controlled study. J Am Coll Nutr 2007; 26: 445–452.

    Article  PubMed  Google Scholar 

  124. Nantz MP, Rowe CA, Muller CE, Creasy RA, Stanilka JM, Percival SS . Supplementation with aged garlic extract improves both NK and gammadelta-T cell function and reduces the severity of cold and flu symptoms: A randomized, double-blind, placebo-controlled nutrition intervention. Clin Nutr 2012; 31: 337–344.

    Article  CAS  PubMed  Google Scholar 

  125. Fischer S, Scheffler A, Kabelitz D . Activation of human gamma delta T-cells by heat-treated mistletoe plant extracts. Immunol Lett 1996; 52: 69–72.

    Article  CAS  PubMed  Google Scholar 

  126. Rowe CA, Nantz MP, Nieves C Jr, West RL, Percival SS . Regular consumption of concord grape juice benefits human immunity. J Med Food 2011; 14: 69–78.

    Article  PubMed  Google Scholar 

  127. Kamath AB, Wang L, Das H, Li L, Reinhold VN, Bukowski JF . Antigens in tea-beverage prime human Vgamma 2Vdelta 2 T cells in vitro and in vivo for memory and nonmemory antibacterial cytokine responses. Proc Natl Acad Sci USA 2003; 100: 6009–6014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Nantz MP, Rowe CA, Nieves C Jr, Percival SS . Immunity and antioxidant capacity in humans is enhanced by consumption of a dried, encapsulated fruit and vegetable juice concentrate. J Nutr 2006; 136: 2606–2610.

    Article  CAS  PubMed  Google Scholar 

  129. Holderness J, Hedges JF, Daughenbaugh K, Kimmel E, Graff J, Freedman B et al. Response of gamma delta T cells to plant-derived tannins. Crit Rev Immunol 2008; 28: 377–402.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

SK is supported by a fellowship from the Alexander von Humboldt Foundation of Germany. DK acknowledges grant support from the Deutsche Forschungsgemeinschaft (DFG WE 3559/2-1) and is also supported by the ‘Inflammation-at-Interfaces’ Cluster of Excellence funded by the Deutsche Forschungsgemeinschaft (DFG).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shirin Kalyan or Dieter Kabelitz.

Ethics declarations

Competing interests

The authors have no conflict of interest to disclose.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kalyan, S., Kabelitz, D. Defining the nature of human γδ T cells: a biographical sketch of the highly empathetic. Cell Mol Immunol 10, 21–29 (2013). https://doi.org/10.1038/cmi.2012.44

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/cmi.2012.44

Keywords

This article is cited by

Search

Quick links