Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Multipotent mesenchymal stromal cells for autoimmune diseases: teaching new dogs old tricks

Abstract

MSCs, otherwise known as multipotent mesenchymal stromal cells, are being examined for the treatment of autoimmune disease (AD) on the basis of their in vitro antiproliferative properties, efficacy in animal models, apparent low acute toxicity and the early positive anecdotal outcomes in human acute GVHD. Phase I/II clinical trials are underway in Crohn's disease and multiple sclerosis (MS) and are being planned for systemic lupus erythematosus (SLE), systemic sclerosis (SSc), systemic vasculitis and other AD. Open issues include patient selection, disease stage and activity, MSC source and expansion and long-term safety. Multidisciplinary groups are collaborating to ensure maximal use of available resources to establish the place, if any, of MSC in the treatment of AD.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Javazon EH, Beggs KJ, Flake AW . Mesenchymal stem cells: paradoxes of passaging. Exp Hematol 2004; 32: 414–425.

    CAS  PubMed  Google Scholar 

  2. Friedenstein AJ, Petrakova KV, Kurolesova AI, Frolova GP . Heterotopic of bone marrow.Analysis of precursor cells for osteogenic and hematopoietic tissues. Transplantation 1968; 6: 230–247.

    CAS  PubMed  Google Scholar 

  3. Haynesworth SE, Goshima J, Goldberg VM, Caplan AI . Characterization of cells with osteogenic potential from human marrow. Bone 1992; 13: 81–88.

    CAS  PubMed  Google Scholar 

  4. Prockop DJ . Marrow stromal cells as stem cells for nonhematopoietic tissues. Science 1997; 276: 71–74.

    CAS  PubMed  Google Scholar 

  5. Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD et al. Multilineage potential of adult human mesenchymal stem cells. Science 1999; 284: 143–147.

    CAS  PubMed  Google Scholar 

  6. Friedenstein AJ, Deriglasova UF, Kulagina NN, Panasuk AF, Rudakowa SF, Luria EA et al. Precursors for fibroblasts in different populations of hematopoietic cells as detected by the in vitro colony assay method. Exp Hematol 1974; 2: 83–92.

    CAS  PubMed  Google Scholar 

  7. Nakahara H, Dennis JE, Bruder SP, Haynesworth SE, Lennon DP, Caplan AI . In vitro differentiation of bone and hypertrophic cartilage from periosteal-derived cells. Exp Cell Res 1991; 195: 492–503.

    CAS  PubMed  Google Scholar 

  8. Sampath TK, Nathanson MA, Reddi AH . In vitro transformation of mesenchymal cells derived from embryonic muscle into cartilage in response to extracellular matrix components of bone. Proc Natl Acad Sci U S A 1984; 81: 3419–3423.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Jones EA, Kinsey SE, English A, Jones RA, Straszynski L, Meredith DM et al. Isolation and characterization of bone marrow multipotential mesenchymal progenitor cells. Arthritis Rheum 2002; 46: 3349–3360.

    PubMed  Google Scholar 

  10. Bieback K, Kluter H . Mesenchymal stromal cells from umbilical cord blood. Curr Stem Cell Res Ther 2007; 2: 310–323.

    CAS  PubMed  Google Scholar 

  11. Soncini M, Vertua E, Gibelli L, Zorzi F, Denegri M, Albertini A et al. Isolation and characterization of mesenchymal cells from human fetal membranes. J Tissue Eng Regen Med 2007; 1: 296–305.

    CAS  PubMed  Google Scholar 

  12. Horwitz E, Le Blanc K, Dominici M, Mueller I, Slaper-Cortenbach I, Marini F et al. Clarification of the nomenclature for MSC: The International Society for Cellular Therapy position statement. Cytotherapy 2005; 7: 393–395.

    CAS  PubMed  Google Scholar 

  13. Tyndall A, LeBlanc K . Stem cells and rheumatology: update on adult stem cell therapy in autoimmune diseases. Arthritis Rheum 2006; 55: 521–525.

    CAS  PubMed  Google Scholar 

  14. Uccelli A, Moretta L, Pistoia V . Immunoregulatory function of mesenchymal stem cells. Eur J Immunol 2006; 36: 2566–2573.

    CAS  PubMed  Google Scholar 

  15. Prockop DJ . Stemness does not explain the repair of many tissues by mesenchymal stem/multipotent stromal cells (MSCs). Clin Pharmacol Ther 2007; 82: 241–243.

    CAS  PubMed  Google Scholar 

  16. Uccelli A, Moretta L, Pistoia V . Mesenchymal stem cells in health and disease. Nat Rev Immunol 2008 (e-pub ahead of print).

  17. Le Blanc K . Immunomodulatory effects of fetal and adult mesenchymal stem cells. Cytotherapy 2003; 5: 485–489.

    CAS  PubMed  Google Scholar 

  18. Nauta AJ, Westerhuis G, Kruisselbrink AB, Lurvink EG, Willemze R, Fibbe WE . Donor-derived mesenchymal stem cells are immunogenic in an allogeneic host and stimulate donor graft rejection in a non-myeloablative setting. Blood 2006; 108: 2114–2120.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Eliopoulos N, Stagg J, Lejeune L, Pommey S, Galipeau J . Allogeneic marrow stromal cells are immune rejected by MHC class I- and class II-mismatched recipient mice. Blood 2005; 106: 4057–4065.

    CAS  PubMed  Google Scholar 

  20. Tse WT, Pendleton JD, Beyer WM, Egalka MC, Guinan EC . Suppression of allogeneic T-cell proliferation by human marrow stromal cells: implications in transplantation. Transplantation 2003; 75: 389–397.

    CAS  PubMed  Google Scholar 

  21. Le Blanc K, Tammik L, Sundberg B, Haynesworth SE, Ringden O . Mesenchymal stem cells inhibit and stimulate mixed lymphocyte cultures and mitogenic responses independently of the major histocompatibility complex. Scand J Immunol 2003; 57: 11–20.

    CAS  PubMed  Google Scholar 

  22. Di Nicola M, Carlo-Stella C, Magni M, Milanesi M, Longoni PD, Matteucci P et al. Human bone marrow stromal cells suppress T-lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli. Blood 2002; 99: 3838–3843.

    CAS  PubMed  Google Scholar 

  23. Klyushnenkova E, Mosca JD, Zernetkina V, Majumdar MK, Beggs KJ, Simonetti DW et al. T cell responses to allogeneic human mesenchymal stem cells: immunogenicity, tolerance, and suppression. J Biomed Sci 2005; 12: 47–57.

    CAS  PubMed  Google Scholar 

  24. Krampera M, Glennie S, Dyson J, Scott D, Laylor R, Simpson E et al. Bone marrow mesenchymal stem cells inhibit the response of naive and memory antigen-specific T cells to their cognate peptide. Blood 2003; 101: 3722–3729.

    CAS  PubMed  Google Scholar 

  25. Bartholomew A, Sturgeon C, Siatskas M, Ferrer K, McIntosh K, Patil S et al. Mesenchymal stem cells suppress lymphocyte proliferation in vitro and prolong skin graft survival in vivo. Exp Hematol 2002; 30: 42–48.

    PubMed  Google Scholar 

  26. Corcione A, Benvenuto F, Ferretti E, Giunti D, Cappiello V, Cazzanti F et al. Human mesenchymal stem cells modulate B cell functions. Blood 2005; 107: 367–372.

    PubMed  Google Scholar 

  27. Glennie S, Soeiro I, Dyson PJ, Lam EW, Dazzi F . Bone marrow mesenchymal stem cells induce division arrest anergy of activated T cells. Blood 2005; 105: 2821–2827.

    CAS  PubMed  Google Scholar 

  28. Benvenuto F, Ferrari S, Gerdoni E, Gualandi F, Frassoni F, Pistoia V et al. Human mesenchymal stem cells promote survival of T cells in a quiescent state. Stem Cells 2007; 25: 1753–1760.

    CAS  PubMed  Google Scholar 

  29. Rasmusson I, Ringden O, Sundberg B, Le Blanc K . Mesenchymal stem cells inhibit the formation of cytotoxic T lymphocytes, but not activated cytotoxic T lymphocytes or natural killer cells. Transplantation 2003; 76: 1208–1213.

    PubMed  Google Scholar 

  30. Prigione I, Benvenuto F, Bocca P, Battistini L, Uccelli A, Pistoia V . Reciprocal Interactions between Human Mesenchymal Stem Cells and {gamma}{delta} T Cells or Invariant Natural Killer T (Inkt) Cells. Stem Cells 2008 (e-pub ahead of print).

  31. Traggiai E, Volpi S, Schena F, Gattorno M, Ferlito F, Moretta L et al. Bone marrow-derived mesenchymal stem cells induce both polyclonal expansion and differentiation of B cells isolated from healthy donors and systemic lupus erythematosus patients. Stem Cells 2008; 26: 562–569.

    CAS  PubMed  Google Scholar 

  32. Rasmusson I, Le Blanc K, Sundberg B, Ringden O . Mesenchymal stem cells stimulate antibody secretion in human B cells. Scand J Immunol 2007; 65: 336–343.

    CAS  PubMed  Google Scholar 

  33. Gerdoni E, Gallo B, Casazza S, Musio S, Bonanni I, Pedemonte E et al. Mesenchymal stem cells effectively modulate pathogenic immune response in experimental autoimmune encephalomyelitis. Ann Neurol 2007; 61: 219–227.

    CAS  PubMed  Google Scholar 

  34. Rafei M, Hsieh J, Fortier S, Li M, Yuan S, Birman E et al. Mesenchymal stromal cell-derived CCL2 suppresses plasma cell immunoglobulin production via STAT3 inactivation and PAX5 induction. Blood 2008; 112: 4991–4998.

    CAS  PubMed  Google Scholar 

  35. Stagg J, Pommey S, Eliopoulos N, Galipeau J . Interferon-gamma-stimulated marrow stromal cells: a new type of nonhematopoietic antigen-presenting cell. Blood 2006; 107: 2570–2577.

    CAS  PubMed  Google Scholar 

  36. Plumas J, Chaperot L, Richard MJ, Molens JP, Bensa JC, Favrot MC . Mesenchymal stem cells induce apoptosis of activated T cells. Leukemia 2005; 19: 1597–1604.

    CAS  PubMed  Google Scholar 

  37. Raffaghello L, Bianchi G, Bertolotto M, Montecucco F, Busca A, Dallegri F et al. Human mesenchymal stem cells inhibit neutrophil apoptosis: a model for neutrophil preservation in the bone marrow niche. Stem Cells 2008; 26: 151–162.

    CAS  PubMed  Google Scholar 

  38. Ramasamy R, Lam EW, Soeiro I, Tisato V, Bonnet D, Dazzi F . Mesenchymal stem cells inhibit proliferation and apoptosis of tumor cells: impact on in vivo tumor growth. Leukemia 2007; 21: 304–310.

    CAS  PubMed  Google Scholar 

  39. Aggarwal S, Pittenger MF . Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood 2005; 105: 1815–1822.

    CAS  PubMed  Google Scholar 

  40. Meisel R, Zibert A, Laryea M, Gobel U, Daubener W, Dilloo D . Human bone marrow stromal cells inhibit allogeneic T-cell responses by indoleamine 2,3-dioxygenase-mediated tryptophan degradation. Blood 2004; 103: 4619–4621.

    CAS  PubMed  Google Scholar 

  41. Sato K, Ozaki K, Oh I, Meguro A, Hatanaka K, Nagai T et al. Nitric oxide plays a critical role in suppression of T-cell proliferation by mesenchymal stem cells. Blood 2007; 109: 228–234.

    CAS  PubMed  Google Scholar 

  42. Nasef A, Mathieu N, Chapel A, Frick J, Francois S, Mazurier C et al. Immunosuppressive effects of mesenchymal stem cells: involvement of HLA-G. Transplantation 2007; 84: 231–237.

    CAS  PubMed  Google Scholar 

  43. Ortiz LA, Dutreil M, Fattman C, Pandey AC, Torres G, Go K et al. Interleukin 1 receptor antagonist mediates the antiinflammatory and antifibrotic effect of mesenchymal stem cells during lung injury. Proc Natl Acad Sci USA 2007; 104: 11002–11007.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Gao J, Dennis JE, Muzic RF, Lundberg M, Caplan AI . The dynamic in vivo distribution of bone marrow-derived mesenchymal stem cells after infusion. Cells Tissues Organs 2001; 169: 12–20.

    CAS  PubMed  Google Scholar 

  45. Devine SM, Cobbs C, Jennings M, Bartholomew A, Hoffman R . Mesenchymal stem cells distribute to a wide range of tissues following systemic infusion into nonhuman primates. Blood 2003; 101: 2999–3001.

    CAS  PubMed  Google Scholar 

  46. Wynn RF, Hart CA, Corradi-Perini C, O'Neill L, Evans CA, Wraith JE et al. A small proportion of mesenchymal stem cells strongly expresses functionally active CXCR4 receptor capable of promoting migration to bone marrow. Blood 2004; 104: 2643–2645.

    CAS  PubMed  Google Scholar 

  47. Sordi V, Malosio ML, Marchesi F, Mercalli A, Melzi R, Giordano T et al. Bone marrow mesenchymal stem cells express a restricted set of functionally active chemokine receptors capable of promoting migration to pancreatic islets. Blood 2005; 106: 419–427.

    CAS  PubMed  Google Scholar 

  48. Fox JM, Chamberlain G, Ashton BA, Middleton J . Recent advances into the understanding of mesenchymal stem cell trafficking. Br J Haematol 2007; 137: 491–502.

    CAS  PubMed  Google Scholar 

  49. Ponte AL, Marais E, Gallay N, Langonne A, Delorme B, Herault O et al. The in vitro migration capacity of human bone marrow mesenchymal stem cells: comparison of chemokine and growth factor chemotactic activities. Stem Cells 2007; 1737–1745.

    CAS  PubMed  Google Scholar 

  50. Ruster B, Gottig S, Ludwig RJ, Bistrian R, Muller S, Seifried E et al. Mesenchymal stem cells display coordinated rolling and adhesion behavior on endothelial cells. Blood 2006; 108: 3938–3944.

    PubMed  Google Scholar 

  51. Sackstein R, Merzaban JS, Cain DW, Dagia NM, Spencer JA, Lin CP et al. Ex vivo glycan engineering of CD44 programs human multipotent mesenchymal stromal cell trafficking to bone. Nat Med 2008; 14: 181–187.

    CAS  PubMed  Google Scholar 

  52. Dwyer RM, Potter-Beirne SM, Harrington KA, Lowery AJ, Hennessy E, Murphy JM et al. Monocyte chemotactic protein-1 secreted by primary breast tumors stimulates migration of mesenchymal stem cells. Clin Cancer Res 2007; 13: 5020–5027.

    CAS  PubMed  Google Scholar 

  53. Mouiseddine M, Francois S, Semont A, Sache A, Allenet B, Mathieu N et al. Human mesenchymal stem cells home specifically to radiation-injured tissues in a non-obese diabetes/severe combined immunodeficiency mouse model. Br J Radiol 2007; 80: S49–S55.

    CAS  PubMed  Google Scholar 

  54. Caplan AI, Dennis JE . Mesenchymal stem cells as trophic mediators. J Cell Biochem 2006; 98: 1076–1084.

    CAS  PubMed  Google Scholar 

  55. Ortiz LA, Gambelli F, McBride C, Gaupp D, Baddoo M, Kaminski N et al. Mesenchymal stem cell engraftment in lung is enhanced in response to bleomycin exposure and ameliorates its fibrotic effects. Proc Natl Acad Sci USA 2003; 100: 8407–8411.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Gupta N, Su X, Popov B, Lee JW, Serikov V, Matthay MA . Intrapulmonary delivery of bone marrow-derived mesenchymal stem cells improves survival and attenuates endotoxin-induced acute lung injury in mice. J Immunol 2007; 179: 1855–1863.

    CAS  PubMed  Google Scholar 

  57. Fang L, Lange C, Engel M, Zander AR, Fehse B . Sensitive balance of suppressing and activating effects of mesenchymal stem cells on T-cell proliferation. Transplantation 2006; 82: 1370–1373.

    PubMed  Google Scholar 

  58. Parekkadan B, van Poll D, Suganuma K, Carter EA, Berthiaume F, Tilles AW et al. Mesenchymal stem cell-derived molecules reverse fulminant hepatic failure. PLoS ONE 2007; 2: e941.

    PubMed  PubMed Central  Google Scholar 

  59. Togel F, Hu Z, Weiss K, Isaac J, Lange C, Westenfelder C et al. Amelioration of acute renal failure by stem cell therapy–paracrine secretion versus transdifferentiation into resident cells: administered mesenchymal stem cells protect against ischemic acute renal failure through differentiation-independent mechanisms. Am J Physiol Renal Physiol; e-pub February 15, 2005. J Am Soc Nephrol 2005; 16: 1153–1163.

    Google Scholar 

  60. Imberti B, Morigi M, Tomasoni S, Rota C, Corna D, Longaretti L et al. Insulin-like growth factor-1 sustains stem cell mediated renal repair. J Am Soc Nephrol 2007; 18: 2921–2928.

    CAS  PubMed  Google Scholar 

  61. Togel F, Weiss K, Yang Y, Hu Z, Zhang P, Westenfelder C . Vasculotropic, paracrine actions of infused mesenchymal stem cells are important to the recovery from acute kidney injury. Am J Physiol Renal Physiol 2007; 292: F1626–F1635.

    CAS  PubMed  Google Scholar 

  62. Mangi AA, Noiseux N, Kong D, He H, Rezvani M, Ingwall JS et al. Mesenchymal stem cells modified with Akt prevent remodeling and restore performance of infarcted hearts. Nat Med 2003; 9: 1195–1201.

    CAS  PubMed  Google Scholar 

  63. Inoue Y, Iriyama A, Ueno S, Takahashi H, Kondo M, Tamaki Y et al. Subretinal transplantation of bone marrow mesenchymal stem cells delays retinal degeneration in the RCS rat model of retinal degeneration. Exp Eye Res 2007; 85: 234–241.

    CAS  PubMed  Google Scholar 

  64. Hung SC, Pochampally RR, Chen SC, Hsu SC, Prockop DJ . Angiogenic effects of human multipotent stromal cell conditioned medium activate the PI3K-Akt pathway in hypoxic endothelial cells to inhibit apoptosis, increase survival, and stimulate angiogenesis. Stem Cells 2007; 25: 2363–2370.

    CAS  PubMed  Google Scholar 

  65. Li Y, Chen J, Wang L, Lu M, Chopp M . Treatment of stroke in rat with intracarotid administration of marrow stromal cells. Neurology 2001; 56: 1666–1672.

    CAS  PubMed  Google Scholar 

  66. Zappia E, Casazza S, Pedemonte E, Benvenuto F, Bonanni I, Gerdoni E et al. Mesenchymal stem cells ameliorate experimental autoimmune encephalomyelitis inducing T-cell anergy. Blood 2005; 106: 1755–1761.

    CAS  PubMed  Google Scholar 

  67. Zhang J, Li Y, Chen J, Cui Y, Lu M, Elias SB et al. Human bone marrow stromal cell treatment improves neurological functional recovery in EAE mice. Exp Neurol 2005; 195: 16–26.

    CAS  PubMed  Google Scholar 

  68. Kassis I, Grigoriadis N, Gowda-Kurkalli B, Mizrachi-Kol R, Ben-Hur T, Slavin S et al. Neuroprotection and immunomodulation with mesenchymal stem cells in chronic experimental autoimmune encephalomyelitis. Arch Neurol 2008; 65: 753–761.

    PubMed  Google Scholar 

  69. Gordon D, Pavlovska G, Glover CP, Uney JB, Wraith D, Scolding NJ . Human mesenchymal stem cells abrogate experimental allergic encephalomyelitis after intraperitoneal injection, and with sparse CNS infiltration. Neurosci Lett 2008; 448: 71–73.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Pluchino S, Martino G . Neural stem cell-mediated immunomodulation: repairing the haemorrhagic brain. Brain 2008; 131: 604–605.

    PubMed  Google Scholar 

  71. Aharonowiz M, Einstein O, Fainstein N, Lassmann H, Reubinoff B, Ben-Hur T . Neuroprotective effect of transplanted human embryonic stem cell-derived neural precursors in an animal model of multiple sclerosis. PLoS ONE 2008; 3: e3145.

    PubMed  PubMed Central  Google Scholar 

  72. Augello A, Tasso R, Negrini SM, Cancedda R, Pennesi G . Cell therapy using allogeneic bone marrow mesenchymal stem cells prevents tissue damage in collagen-induced arthritis. Arthritis Rheum 2007; 56: 1175–1186.

    CAS  PubMed  Google Scholar 

  73. Zheng ZH, Li XY, Ding J, Jia JF, Zhu P . Allogeneic mesenchymal stem cell and mesenchymal stem cell-differentiated chondrocyte suppress the responses of type II collagen-reactive T cells in rheumatoid arthritis. Rheumatology (Oxford) 2008; 47: 22–30.

    CAS  Google Scholar 

  74. Choi JJ, Yoo SA, Park SJ, Kang YJ, Kim WU, Oh IH et al. Mesenchymal stem cells overexpressing interleukin-10 attenuate collagen-induced arthritis in mice. Clin Exp Immunol 2008; 153: 269–276.

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Lee RH, Seo MJ, Reger RL, Spees JL, Pulin AA, Olson SD et al. Multipotent stromal cells from human marrow home to and promote repair of pancreatic islets and renal glomeruli in diabetic NOD/scid mice. Proc Natl Acad Sci USA 2006; 103: 17438–17443.

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Urban VS, Kiss J, Kovacs J, Gocza E, Vas V, Monostori E et al. Mesenchymal stem cells cooperate with bone marrow cells in therapy of diabetes. Stem Cells 2008; 26: 244–253.

    CAS  PubMed  Google Scholar 

  77. Parekkadan B, Tilles AW, Yarmush ML . Bone marrow-derived mesenchymal stem cells ameliorate autoimmune enteropathy independently of regulatory T cells. Stem Cells 2008; 26: 1913–1919.

    PubMed  Google Scholar 

  78. Lazarus HM, Haynesworth SE, Gerson SL, Rosenthal NS, Caplan AI . Ex vivo expansion and subsequent infusion of human bone marrow-derived stromal progenitor cells (mesenchymal progenitor cells): implications for therapeutic use. Bone Marrow Transplant 1995; 16: 557–564.

    CAS  PubMed  Google Scholar 

  79. Lazarus HM, Koc ON, Devine SM, Curtin P, Maziarz RT, Holland HK et al. Cotransplantation of HLA-identical sibling culture-expanded mesenchymal stem cells and hematopoietic stem cells in hematologic malignancy patients. Biol Blood Marrow Transplant 2005; 11: 389–398.

    PubMed  Google Scholar 

  80. Koc ON, Gerson SL, Cooper BW, Dyhouse SM, Haynesworth SE, Caplan AI et al. Rapid hematopoietic recovery after coinfusion of autologous-blood stem cells and culture-expanded marrow mesenchymal stem cells in advanced breast cancer patients receiving high-dose chemotherapy. J Clin Oncol. 2000; 18: 307–316.

    CAS  PubMed  Google Scholar 

  81. Horwitz EM, Gordon PL, Koo WK, Marx JC, Neel MD, McNall RY et al. Isolated allogeneic bone marrow-derived mesenchymal cells engraft and stimulate growth in children with osteogenesis imperfecta: Implications for cell therapy of bone. Proc Natl Acad Sci USA 2002; 99: 8932–8937.

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Fouillard L, Bensidhoum M, Bories D, Bonte H, Lopez M, Moseley AM et al. Engraftment of allogeneic mesenchymal stem cells in the bone marrow of a patient with severe idiopathic aplastic anemia improves stroma. Leukemia 2003; 17: 474–476.

    CAS  PubMed  Google Scholar 

  83. Le Blanc K, Rasmusson I, Sundberg B, Gotherstrom C, Hassan M, Uzunel M et al. Treatment of severe acute graft-versus-host disease with third party haploidentical mesenchymal stem cells. Lancet 2004; 363: 1439–1441.

    PubMed  Google Scholar 

  84. Le Blanc K, Frassoni F, Ball L, Locatelli F, Roelofs H, Lewis I et al. Mesenchymal stem cells for treatment of steroid-resistant, severe, acute graft-versus-host disease: a phase II study. Lancet 2008; 371: 1579–1586.

    CAS  PubMed  Google Scholar 

  85. Ning H, Yang F, Jiang M, Hu L, Feng K, Zhang J et al. The correlation between cotransplantation of mesenchymal stem cells and higher recurrence rate in hematologic malignancy patients: outcome of a pilot clinical study. Leukemia 2008; 22: 593–599.

    CAS  PubMed  Google Scholar 

  86. Bocelli-Tyndall C, Bracci L, Spagnoli G, Braccini A, Bouchenaki M, Ceredig R et al. Bone marrow mesenchymal stromal cells (BM-MSCs) from healthy donors and auto-immune disease patients reduce the proliferation of autologous- and allogeneic-stimulated lymphocytes in vitro. Rheumatology (Oxford) 2007; 46: 403–408.

    CAS  Google Scholar 

  87. Larghero J, Farge D, Braccini A, Lecourt S, Scherberich A, Fois E et al. Phenotypical and functional characteristics of in vitro expanded bone marrow mesenchymal stem cells from patients with systemic sclerosis. Ann Rheum Dis 2008; 67: 443–449.

    CAS  PubMed  Google Scholar 

  88. Cipriani P, Guiducci S, Miniati I, Cinelli M, Urbani S, Marrelli A et al. Impairment of endothelial cell differentiation from bone marrow-derived mesenchymal stem cells: new insight into the pathogenesis of systemic sclerosis. Arthritis Rheum 2007; 56: 1994–2004.

    CAS  PubMed  Google Scholar 

  89. Mazzanti B, Aldinucci A, Biagioli T, Barilaro A, Urbani S, Dal Pozzo S et al. Differences in mesenchymal stem cell cytokine profiles between MS patients and healthy donors: implication for assessment of disease activity and treatment. J Neuroimmunol 2008; 199: 142–150.

    CAS  PubMed  Google Scholar 

  90. Ball SG, Shuttleworth CA, Kielty CM . Mesenchymal stem cells and neovascularization: role of platelet-derived growth factor receptors. J Cell Mol Med 2007; 11: 1012–1030.

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Djouad F, Plence P, Bony C, Tropel P, Apparailly F, Sany J et al. Immunosuppressive effect of mesenchymal stem cells favors tumor growth in allogeneic animals. Blood 2003; 102: 3837–3844.

    CAS  PubMed  Google Scholar 

  92. Tolar J, Nauta AJ, Osborn MJ, Panoskaltsis Mortari A, McElmurry RT, Bell S et al. Sarcoma derived from cultured mesenchymal stem cells. Stem Cells 2007; 25: 371–379.

    CAS  PubMed  Google Scholar 

  93. Mohyeddin Bonab M, Yazdanbakhsh S, Lotfi J, Alimoghaddom K, Talebian F, Hooshmand F et al. Does mesenchymal stem cell therapy help multiple sclerosis patients? Report of a pilot study. Iran J Immunol 2007; 4: 50–57.

    PubMed  Google Scholar 

  94. Slavin S, Kurkalli BG, Karussis D . The potential use of adult stem cells for the treatment of multiple sclerosis and other neurodegenerative disorders. Clin Neurol Neurosurg 2008; 110: 943–946.

    PubMed  Google Scholar 

  95. Taupin P . OTI-010 Osiris Therapeutics/JCR Pharmaceuticals. Curr Opin Investig Drugs 2006; 7: 473–481.

    CAS  PubMed  Google Scholar 

  96. Schallmoser K, Rohde E, Reinisch A, Bartmann C, Thaler D, Drexler C et al. Rapid large-scale expansion of functional mesenchymal stem cells from unmanipulated bone marrow without animal serum. Tissue Eng Part C Methods 2008; 14: 185–196.

    CAS  PubMed  Google Scholar 

  97. Le Blanc K, Fibbe W . A new cell therapy registry coordinated by the European Group for Blood and Marrow Transplantation (EBMT). Bone Marrow Transplant 2008; 41: 319.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Some of the studies reported in this paper were supported by grants to A.U. from the Fondazione Italiana Sclerosi Multipla (FISM), the Italian Ministry of Health (Ricerca Finalizzata, the Italian Ministry of the University and Scientific Research (MIUR), the ‘Progetto LIMONTE’, the Fondazione CARIGE and the Fondazione CARIPLO.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A Tyndall.

Additional information

Conflict of interest

The authors have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tyndall, A., Uccelli, A. Multipotent mesenchymal stromal cells for autoimmune diseases: teaching new dogs old tricks. Bone Marrow Transplant 43, 821–828 (2009). https://doi.org/10.1038/bmt.2009.63

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/bmt.2009.63

Keywords

This article is cited by

Search

Quick links