Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Promoter region variation in NFE2L2 influences susceptibility to ototoxicity in patients exposed to high cumulative doses of cisplatin

Abstract

Ototoxicity is a disabling reaction to cisplatin chemotherapy. Much of the inter-individual variability in the development of hearing impairment among cisplatin-receiving patients has not been fully accounted for. In particular, little is known about the pharmacogenomics of cisplatin-induced ototoxicity. This study sought to investigate the role of variation in five candidate genes in a cohort of South African cancer patients. Five variants within the candidate genes were genotyped in 214 patients, of which SLC22A2 rs316019 and NFE2L2 rs6721961 associated with reduced rates of ototoxicity. In the patients who were exposed to cumulative cisplatin doses 200 mg m2 (n=113), the variant rs6721961 associated with ototoxicity according to three different grading scales of hearing loss (ASHA, P=0.005; Chang, P=0.028; CTCAE, P=0.004). The NFE2L2 promotor variant rs6721961 may therefore be protective against hearing loss in cisplatin-receiving cancer patients.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Einarsson EJ, Petersen H, Wiebe T, Fransson PA, Magnusson M, Moëll C . Severe difficulties with word recognition in noise after platinum chemotherapy in childhood, and improvements with open-fitting hearing-aids. Int J Audiol 2011; 50: 642–651.

    Article  PubMed Central  Google Scholar 

  2. Kushner BH, Budnick A, Kramer K, Modak S, Cheung NKV . Ototoxicity from high-dose use of platinum compounds in patients with neuroblastoma. Cancer 2006; 107: 417–422.

    Article  CAS  PubMed Central  Google Scholar 

  3. Whitehorn H, Sibanda M, Lacerda M, Spracklen T, Ramma L, Dalvie S et al. High prevalence of cisplatin-induced ototoxicity in Cape Town, South Africa. S Afr Med J 2014; 104: 288–291.

    Article  CAS  PubMed Central  Google Scholar 

  4. Bokemeyer C, Berger CC, Hartmann JT, Kollmannsberger C, Schmoll HJ, Kuczyk MA et al. Analysis of risk factors for cisplatin-induced ototoxicity in patients with testicular cancer. Br J Cancer 1998; 77: 1355–1362.

    Article  CAS  PubMed Central  Google Scholar 

  5. Bertolini P, Lassalle M, Mercier G, Raquin MA, Izzi G, Corradini N et al. Platinum compound-related ototoxicity in children: long-term follow-up reveals continuous worsening of hearing loss. J Pediatr Hematol Oncol 2004; 26: 649–655.

    Article  PubMed Central  Google Scholar 

  6. Li Y, Womer RB, Silber JH . Predicting cisplatin ototoxicity in children: the influence of age and the cumulative dose. Eur J Cancer 2004; 40: 2445–2451.

    Article  CAS  PubMed Central  Google Scholar 

  7. De Jongh FE, Van Veen RN, Veltman SJ, De Wit R, Van der Burg MEL, Van den Bent MJ et al. Weekly high-dose cisplatin is a feasible treatment option: analysis on prognostic factors for toxicity in 400 patients. Br J Cancer 2003; 88: 1199–1206.

    Article  CAS  PubMed Central  Google Scholar 

  8. Chen WC, Jackson A, Budnick AS, Pfister DG, Kraus DH, Hunt MA et al. Sensorineural hearing loss in combined modality treatment of nasopharyngeal carcinoma. Cancer 2006; 106: 820–829.

    Article  PubMed Central  Google Scholar 

  9. Yancey A, Harris MS, Egbelakin A, Gilbert J, Pisoni DB, Renbarger J . Risk factors for cisplatin-associated ototoxicity in paediatric oncology patients. Pediatr Blood Cancer 2012; 59: 144–148.

    Article  PubMed Central  Google Scholar 

  10. Choeyprasert W, Sawangpanich R, Lertsukprasert K, Udomsubpayakul U, Songdej D, Unurathapan U et al. Cisplatin-induced ototoxicity in paediatric solid tumours: the role of glutathione S-transferases and megalin genetic polymorphisms. J Pediatr Hematol Oncol 2013; 35: 138–143.

    Article  Google Scholar 

  11. Kirkim G, Olgun Y, Aktas S, Kiray M, Kolatan E, Altun Z et al. Is there a gender-related susceptibility for cisplatin ototoxicity? Eur Arch Otorhinolaryngol 2014; 272: 2755–2763.

    Article  PubMed Central  Google Scholar 

  12. Ross CJ, Katzov-Eckert H, Dubé MP, Brooks B, Rassekh SR, Barhdadi A et al. Genetic variants in TPMT and COMT are associated with hearing loss in children receiving cisplatin chemotherapy. Nat Genet 2009; 41: 1345–1349.

    Article  CAS  PubMed Central  Google Scholar 

  13. Oldenburg J, Kraggerud SM, Cvancarova M, Lothe RA, Fossa SD . Cisplatin-induced long-term hearing impairment is associated with specific glutathione s-transferase genotypes in testicular cancer survivors. J Clin Oncol 2007; 25: 708–714.

    Article  CAS  PubMed Central  Google Scholar 

  14. Riedemann L, Lanvers C, Deuster D, Peters U, Boos J, Jürgens H et al. Megalin genetic polymorphisms and individual sensitivity to the ototoxic effect of cisplatin. Pharmacogenomics J 2008; 8: 23–28.

    Article  CAS  PubMed Central  Google Scholar 

  15. Spracklen TF, Whitehorn H, Vorster AA, Ramma L, Dalvie S, Ramesar RS . Genetic variation in Otos is associated with cisplatin-induced ototoxicity. Pharmacogenomics 2014; 15: 1667–1676.

    Article  CAS  PubMed Central  Google Scholar 

  16. Xu H, Robinson GW, Huang J, Lim JY, Zhang H, Bass JK et al. Common variants in ACYP2 influence susceptibility to cisplatin-induced hearing loss. Nat Genet 2015; 47: 263–266.

    Article  CAS  PubMed Central  Google Scholar 

  17. Yang JJ, Lim JYS, Huang J, Bass J, Wu J, Wang C et al. The role of inherited TPMT and COMT genetic variation in cisplatin-induced ototoxicity in children with cancer. Clin Pharmacol Ther 2013; 94: 252–259.

    Article  CAS  PubMed Central  Google Scholar 

  18. Lanvers-Kaminsky C, Malath I, Deuster D, Ciarimboli G, Boos J, Am Zehnhoff-Dinnesen AG . Evaluation of pharmacogenetic markers to predict the risk of cisplatin-induced ototoxicity. Clin Pharmacol Ther 2014; 96: 156–157.

    Article  CAS  PubMed Central  Google Scholar 

  19. Hagleiter MM, Coenen MJ, Patino-Garcia A, de Bont ES, Gonzalez-Neira A, Vos HI et al. Influence of genetic variants in TPMT and COMT associated with cisplatin induced hearing loss in patients with cancer: two new cohorts and a meta-analysis reveal significant heterogeneity between cohorts. PLoS One 2014; 9: e115869.

    Article  Google Scholar 

  20. Dolan ME, Newbold KG, Nagasubramanian R, Wu X, Ratain MJ, Cook EH Jr et al. Heritability and linkage analysis of sensitivity to cisplatin-induced cytotoxicity. Cancer Res 2004; 64: 4353–4356.

    Article  CAS  PubMed Central  Google Scholar 

  21. Pussegoda K The pharmacogenomics of cisplatin-induced hearing loss. M.Sc thesis, The University of British Columbia: Vancouver, Canada, 2012..

  22. American Speech-Language-Hearing Association. Audiologic management of individuals receiving cochleotoxic drug therapy, 1994. Available at: http://www.asha.org/policy (accessed 22 October 2014).

  23. Chang KW, Chinosornvatana N . Practical grading system for evaluating cisplatin ototoxicity in children. J Clin Oncol 2010; 28: 1788–1795.

    Article  CAS  PubMed Central  Google Scholar 

  24. National Cancer Institute. Common Terminology Criteria for Adverse Events (CTCAE) version 4.03, 2015. Available at: http://evs.nci.nih.gov/ftp1/CTCAE/CTCAE_4.03_2010-06-14_QuickReference_5x7.pdf (accessed 11 March 2015).

  25. So H, Kim H, Kim Y, Kim E, Pae HO, Chung HT et al. Evidence that cisplatin-induced auditory damage is attenuated by downregulation of pro-inflammatory cytokines via Nrf2/HO-1. J Assoc Res Otolaryngol 2008; 9: 290–306.

    Article  PubMed Central  Google Scholar 

  26. Aleksunes LM, Goedken MJ, Rockwell CE, Thomale J, Manautou JE, Klaassen CD . Transcriptional regulation of renal cytoprotective genes by Nrf2 and its potential use as a therapeutic target to mitigate cisplatin-induced nephrotoxicity. J Pharmacol Exp Ther 2010; 335: 2–12.

    Article  CAS  PubMed Central  Google Scholar 

  27. Jin J, Li M, Zhao Z, Sun X, Li J, Wang W et al. Protective effect of Wuzhi tablet (Schisandra sphenanthera extract) against cisplatin-induced nephrotoxicity via Nrf2-mediated defense response. Phytomedicine 2015; 22: 528–535.

    Article  CAS  PubMed Central  Google Scholar 

  28. Kim SJ, Ho Hur J, Park C, Kim HJ, Oh GS, Lee JN et al. Bucillamine prevents cisplatin-induced ototoxicity through induction of glutathione and antioxidant genes. Exp Mol Med 2015; 47: e142.

    Article  CAS  PubMed Central  Google Scholar 

  29. Hou X, Bai X, Gou X, Zeng H, Xia C, Zhuang W et al. 3',4',5',5,7-pentamethoxyflavone sensitises cisplatin-resistant A549 cells to cisplatin by inhibition of Nrf2 pathway. Mol Cells 2015; 38: 396–401.

    Article  CAS  PubMed Central  Google Scholar 

  30. Marzec JM, Christie JD, Reddy SP, Jedlicka AE, Vuong H, Lanken PN et al. Functional polymorphisms in the transcription factor NRF2 in humans increase the risk of acute lung injury. FASEB J 2007; 21: 2237–2246.

    Article  CAS  PubMed Central  Google Scholar 

  31. Marzack ED, Marzec JM, Zeldin DC, Kleeberger SR, Brown NJ, Pretorius M et al. Polymorphisms in the transcription factor NRF2 and forearm vasodilator responses in humans. Pharmacogenet Genomics 2012; 22: 620–628.

    Article  Google Scholar 

  32. Suzuki T, Shibata T, Takaya K, Shiraishi K, Kohno T, Kunitoh H et al. Regulatory nexus of synthesis and degradation deciphers cellular Nrf2 expression levels. Mol Cell Biol 2013; 33: 2402–2412.

    Article  CAS  PubMed Central  Google Scholar 

  33. Ungvári I, Hadadi E, Virág V, Nagy A, Kiss A, Kalmár A et al. Relationship between air pollution, NFE2L2 gene polymorphisms and childhood asthma in a Hungarian population. J. Community Genet 2012; 3: 25–33.

    Article  Google Scholar 

  34. Sampath V, Garland JS, Helbling D, Dimmock D, Mulrooney NP, Simpson PM et al. Antioxidant response genes sequence variants and BPD susceptibility in VLBW infants. Pediatr Res 2015; 77: 477–483.

    Article  CAS  PubMed Central  Google Scholar 

  35. von Otter M, Landgren S, Nilsson S, Celojevic D, Bergström P, Håkansson A et al. Association of Nrf2-encoding NFE2L2 haplotypes with Parkinson's disease. BMC Med Genet 2010; 11: 36.

    Article  PubMed Central  Google Scholar 

  36. Todorovic M, Newman JR, Shan J, Bentley S, Wood SA, Silburn PA et al. Comprehensive assessment of genetic sequence variants in the antioxidant 'master regulator' NRF2 in idiopathic Parkinson's disease. PLoS One 2015; 10: e0128030.

    Article  PubMed Central  Google Scholar 

  37. Filipski KK, Mathijssen RH, Mikkelsen TS, Schinkel AH, Sparreboom A . Contribution of organic cation transporter 2 (OCT2) to cisplatin-induced nephrotoxicity. Clin Pharmacol Ther 2009; 86: 396–402.

    Article  CAS  PubMed Central  Google Scholar 

  38. Ciarimboli G, Deuster D, Knief A, Sperling M, Holtkamp M, Edemir B et al. Organic cation transporter 2 mediates cisplatin-induced oto- and nephrotoxicity and is a target for protective interventions. Am J Pathol 2010; 176: 1169–1180.

    Article  CAS  PubMed Central  Google Scholar 

  39. Kang HJ, Song IS, Shin HJ, Kim WY, Lee CH, Shim JC et al. Identification and functional characterisation of genetic variants of human organic cation transporters in a Korean population. Drug Metab Dispos 2007; 35: 667–675.

    Article  CAS  PubMed Central  Google Scholar 

  40. Song IS, Shin HJ, Shim EJ, Jung IS, Kim WY, Shon JH et al. Genetic variants of the organic cation transporter 2 influence the disposition of metformin. Clin Pharmacol Ther 2008; 84: 559–562.

    Article  CAS  PubMed Central  Google Scholar 

  41. Song IS, Lee do Y, Shin MH, Kim H, Ahn YG, Park I et al. Pharmacogenetics meets metabolomics: discovery of tryptophan as a new endogenous OCT2 substrate related to metformin disposition. PLoS One 2012; 7: e36637.

    Article  CAS  PubMed Central  Google Scholar 

  42. Lanvers-Kaminsky C, Sprowl JA, Malath I, Deuster D, Eveslage M, Schlatter E et al. Human OCT2 variant c.808G>T confers protection effect against cisplatin-induced ototoxicity. Pharmacogenomics 2015; 16: 323–332.

    Article  CAS  PubMed Central  Google Scholar 

  43. Girotto G, Vuckovic D, Buniello A, Lorente-Cánovas B, Lewis M, Gasparini P et al. Expression and replication studies to identify new candidate genes involved in normal hearing function. PLoS One 2014; 9: e85352.

    Article  PubMed Central  Google Scholar 

  44. Shukla SJ, Duan S, Badner JA, Wu X, Dolan ME . Susceptibility loci involved in cisplatin-induced cytotoxicity and apoptosis. Pharmacogenet Genomics 2008; 18: 253–262.

    Article  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the NRF and MRC SA for funding this research, and Sr Gameda Benefeld for recruitment of the patient cohort.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R S Ramesar.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Spracklen, T., Vorster, A., Ramma, L. et al. Promoter region variation in NFE2L2 influences susceptibility to ototoxicity in patients exposed to high cumulative doses of cisplatin. Pharmacogenomics J 17, 515–520 (2017). https://doi.org/10.1038/tpj.2016.52

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/tpj.2016.52

This article is cited by

Search

Quick links