Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Effect of ABCB1 diplotype on tacrolimus disposition in renal recipients depends on CYP3A5 and CYP3A4 genotype

Subjects

Abstract

The relevance of most genetic polymorphisms beyond CYP3A5*1 on tacrolimus disposition remains unclear. We constructed a predictive mixed model for tacrolimus dose-corrected trough concentration (C0/dose) at months 3, 12 and 24 after transplantation in a retrospective cohort of 766 predominantly Causasian adult renal recipients (n=2042 trough concentrations). All patients were genotyped for 32 single-nucleotide polymorphisms with a proven or possible relevance to tacrolimus disposition based on the previous studies. Of these, ABCB1, ABCC2, OATP1B1, COMT, FMO, PPARA and APOA5 were analyzed as (functional) diplotype groups. Predictors of C0/dose were CYP3A5*1, hematocrit, age, CYP3A4*22, use of concomitant CYP3A4 inhibitor or inducer, ALT, estimated glomerular filtration rate, tacrolimus formulation (once vs twice daily), ABCB1 diplotype and time after transplantation. The effect of ABCB1 diplotype was small but strongly accentuated in CYP3A4*22 carriers and non-existent in CYP3A5 expressors. ABCC2 diplotype had a limited effect on C0/dose that was only statistically significant in CYP3A5 non-expressors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Piekoszewski W, Chow FS, Jusko WJ . Disposition of tacrolimus (FK 506) in rabbits. Role of red blood cell binding in hepatic clearance. Drug Metab Dispos 1993; 21: 690–698.

    CAS  PubMed  Google Scholar 

  2. Bekersky I, Dressler D, Mekki Q . Effect of time of meal consumption on bioavailability of a single oral 5 mg tacrolimus dose. J Clin Pharmacol 2001; 41: 289–297.

    Article  CAS  Google Scholar 

  3. de Jonge H, Kuypers DR, Verbeke K, Vanrenterghem Y . Reduced C0 concentrations and increased dose requirements in renal allograft recipients converted to the novel once-daily tacrolimus formulation. Transplantation 2010; 90: 523–529.

    Article  Google Scholar 

  4. Maes BD, Lemahieu W, Kuypers D, Evenepoel P, Coosemans W, Pirenne J et al. Differential effect of diarrhea on FK506 versus cyclosporine A trough levels and resultant prevention of allograft rejection in renal transplant recipients. Am J Transplant 2002; 2: 989–992.

    Article  CAS  Google Scholar 

  5. Fukudo M, Yano I, Masuda S, Goto M, Uesugi M, Katsura T et al. Population pharmacokinetic and pharmacogenomic analysis of tacrolimus in pediatric living-donor liver transplant recipients. Clin Pharmacol Ther 2006; 80: 331–345.

    Article  CAS  Google Scholar 

  6. Staatz CE, Willis C, Taylor PJ, Tett SE . Population pharmacokinetics of tacrolimus in adult kidney transplant recipients. Clin Pharmacol Ther 2002; 72: 660–669.

    Article  CAS  Google Scholar 

  7. Jacobson P, Schladt D, Oetting WS, Leduc R, Guan W, Matas AJ et al. Lower calcineurin inhibitor doses in older compared to younger kidney transplant recipients yield similar troughs. Am J Transplant 2012; 12: 3326–3336.

    Article  CAS  PubMed Central  Google Scholar 

  8. Kuypers DRJ, de Jonge H, Naesens M, Lerut E, Verbeke K, Vanrenterghem Y . CYP3A5 and CYP3A4 but not MDR1 single-nucleotide polymorphisms determine long-term tacrolimus disposition and drug-related nephrotoxicity in renal recipients. Clin Pharmacol Ther 2007; 82: 711–725.

    Article  CAS  Google Scholar 

  9. de Jonge H, Vanhove T, de Loor H, Verbeke K, Kuypers DR . Progressive decline in tacrolimus clearance after renal transplantation is partially explained by decreasing CYP3A4 activity and increasing haematocrit. Br J Clin Pharmacol 2015; 80: 548–559.

    Article  CAS  PubMed Central  Google Scholar 

  10. Terrazzino S, Quaglia M, Stratta P, Canonico PL, Genazzani AA . The effect of CYP3A5 6986A>G and ABCB1 3435C>T on tacrolimus dose-adjusted trough levels and acute rejection rates in renal transplant patients: a systematic review and meta-analysis. Pharmacogenet Genomics 2012; 22: 642–645.

    Article  CAS  Google Scholar 

  11. Elens L, Hesselink DA, van Schaik RHN, van Gelder T . The CYP3A4*22 allele affects the predictive value of a pharmacogenetic algorithm predicting tacrolimus predose concentrations. Br J Clin Pharmacol 2013; 75: 1545–1547.

    Article  CAS  Google Scholar 

  12. Staatz CE, Goodman LK, Tett SE . Effect of CYP3A and ABCB1Single nucleotide polymorphisms on the pharmacokinetics and pharmarcodynamics of calcineurin inhibitors: part II. Clin Pharmacokinet 2010; 49: 207–222.

    Article  CAS  Google Scholar 

  13. Jacobson PA, Oetting WS, Brearley AM, Leduc R, Guan W, Schladt D et al. Novel polymorphisms associated with tacrolimus trough concentrations: results from a multicenter kidney transplant consortium. Transplantation 2011; 91: 300–308.

    Article  CAS  PubMed Central  Google Scholar 

  14. de Jonge H, Metalidis C, Naesens M, Lambrechts D, Kuypers DRJ . The P450 oxidoreductase *28 SNP is associated with low initial tacrolimus exposure and increased dose requirements in CYP3A5-expressing renal recipients. Pharmacogenomics 2011; 12: 1281–1291.

    Article  CAS  PubMed Central  Google Scholar 

  15. Gijsen VMGJ, van Schaik RHN, Soldin OP, Soldin SJ, Nulman I, Koren G et al. P450 oxidoreductase *28 (POR*28) and tacrolimus disposition in pediatric kidney transplant recipients—a pilot study. Ther Drug Monit 2014; 36: 152–158.

    Article  CAS  PubMed Central  Google Scholar 

  16. Kuypers DRJ, de Loor H, Naesens M, Coopmans T, de Jonge H . Combined effects of CYP3A5*1, POR*28, and CYP3A4*22 single nucleotide polymorphisms on early concentration-controlled tacrolimus exposure in de-novo renal recipients. Pharmacogenet Genomics 2014; 24: 597–606.

    Article  CAS  Google Scholar 

  17. Pulk RA, Schladt DS, Oetting WS, Guan W, Israni AK, Matas AJ et al. Multigene predictors of tacrolimus exposure in kidney transplant recipients. Pharmacogenomics 2015; 16: 841–854.

    Article  CAS  PubMed Central  Google Scholar 

  18. Benkali K, Prémaud A, Picard N, Rérolle J-P, Toupance O, Hoizey G et al. Tacrolimus population pharmacokinetic-pharmacogenetic analysis and bayesian estimation in renal transplant recipients. Clin Pharmacokinet 2009; 48: 805–816.

    Article  CAS  Google Scholar 

  19. Barraclough KA, Isbel NM, Lee KJ, Bergmann TK, Johnson DW, McWhinney BC et al. NR1I2 polymorphisms are related to tacrolimus dose-adjusted exposure and BK viremia in adult kidney transplantation. Transplantation 2012; 94: 1025–1032.

    Article  CAS  Google Scholar 

  20. Li J-L, Liu S, Fu Q, Zhang Y, Wang X-D, Liu X-M et al. Interactive effects of CYP3A4, CYP3A5, MDR1 and NR1I2 polymorphisms on tracrolimus trough concentrations in early postrenal transplant recipients. Pharmacogenomics 2015; 16: 1355–1365.

    Article  CAS  Google Scholar 

  21. Bruckmueller H, Werk AN, Renders L, Feldkamp T, Tepel M, Borst C et al. Which genetic determinants should be considered for tacrolimus dose optimization in kidney transplantation? A combined analysis of genes affecting the CYP3A locus. Ther Drug Monit 2015; 37: 288–295.

    Article  CAS  Google Scholar 

  22. Renders L, Frisman M, Ufer M, Mosyagin I, Haenisch S, Ott U et al. CYP3A5 genotype markedly influences the pharmacokinetics of tacrolimus and sirolimus in kidney transplant recipients. Clin Pharmacol Ther 2007; 81: 228–234.

    Article  CAS  Google Scholar 

  23. Zhao W, Elie V, Roussey G, Brochard K, Niaudet P, Leroy V et al. Population pharmacokinetics and pharmacogenetics of tacrolimus in de novo pediatric kidney transplant recipients. J Clin Pharmacol 2010; 50: 1280–1291.

    Article  CAS  Google Scholar 

  24. Ogasawara K, Chitnis SD, Gohh RY, Christians U, Akhlaghi F . Multidrug resistance-associated protein 2 (MRP2/ABCC2) haplotypes significantly affect the pharmacokinetics of tacrolimus in kidney transplant recipients. Clin Pharmacokinet 2013; 52: 751–762.

    Article  CAS  PubMed Central  Google Scholar 

  25. Boivin A-A, Cardinal H, Barama A, Naud J, Pichette V, Hebert M-J et al. Influence of SLCO1B3 genetic variations on tacrolimus pharmacokinetics in renal transplant recipients. Drug Metab Pharmacokinet 2013; 28: 274–277.

    Article  CAS  Google Scholar 

  26. Elens L, Capron A, Kerckhove V, Van, Lerut J, Mourad M, Lison D et al. 1199G>A and 2677G>T/A polymorphisms of ABCB1 independently affect tacrolimus concentration in hepatic tissue after liver transplantation. Pharmacogenet Genomics 2007; 17: 873–883.

    Article  CAS  Google Scholar 

  27. Kurzawski M, Malinowski D, Dziewanowski K, Droździk M . Impact of PPARA and POR polymorphisms on tacrolimus pharmacokinetics and new-onset diabetes in kidney transplant recipients. Pharmacogenet Genomics 2014; 24: 397–400.

    CAS  PubMed  Google Scholar 

  28. Lunde I, Bremer S, Midtvedt K, Mohebi B, Dahl M, Bergan S et al. The influence of CYP3A, PPARA, and POR genetic variants on the pharmacokinetics of tacrolimus and cyclosporine in renal transplant recipients. Eur J Clin Pharmacol 2014; 70: 685–693.

    Article  CAS  PubMed Central  Google Scholar 

  29. Miller SA, Dykes DD, Polesky HF . A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Res 1988; 16: 1215.

    Article  CAS  PubMed Central  Google Scholar 

  30. Barrett JC, Fry B, Maller J, Daly MJ . Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics 2005; 21: 263–265.

    Article  CAS  PubMed Central  Google Scholar 

  31. Stephens M, Smith NJ, Donnelly P . A new statistical method for haplotype reconstruction from population data. Am J Hum Genet 2001; 68: 978–989.

    Article  CAS  PubMed Central  Google Scholar 

  32. Laechelt S, Turrini E, Ruehmkorf A, Siegmund W, Cascorbi I, Haenisch S . Impact of ABCC2 haplotypes on transcriptional and posttranscriptional gene regulation and function. Pharmacogenomics J 2011; 11: 25–34.

    Article  CAS  Google Scholar 

  33. FDA. Drug development and drug interactions: table of substrates, inhibitors and inducers. Available at http://www.fda.gov/Drugs/DevelopmentApprovalProcess/DevelopmentResources/DrugInteractionsLabeling/ucm093664.htm (accessed on 18 November 2015).

  34. Staatz C, Goodman L, Tett S . Effect of CYP3A and ABCB1 single nucleotide polymorphisms on the pharmacokinetics and pharmacodynamics of calcineurin inhibitors: part I. Clin Pharmacokinet 2010; 49: 141–175.

    Article  CAS  PubMed Central  Google Scholar 

  35. Wang J, Zeevi A, McCurry K, Schuetz E, Zheng H, Iacono A et al. Impact of ABCB1 (MDR1) haplotypes on tacrolimus dosing in adult lung transplant patients who are CYP3A5 *3/*3 non-expressors. Transpl Immunol 2006; 15: 235–240.

    Article  Google Scholar 

  36. Wu C-Y, Benet LZ . Predicting drug disposition via application of BCS: transport/absorption/elimination interplay and development of a biopharmaceutics drug disposition classification system. Pharm Res 2005; 22: 11–23.

    Article  CAS  Google Scholar 

  37. Wu C-Y, Benet LZ . Disposition of tacrolimus in isolated perfused rat liver: influence of troleandomycin, cyclosporine, and gg918. Drug Metab Dispos 2003; 31: 1292–1295.

    Article  CAS  Google Scholar 

  38. Yamazaki H, Nakamoto M, Shimizu M, Murayama N, Niwa T . Potential impact of cytochrome P450 3A5 in human liver on drug interactions with triazoles. Br J Clin Pharmacol 2010; 69: 593–597.

    Article  CAS  PubMed Central  Google Scholar 

  39. Kuypers DR, de Jonge H, Naesens M, Vanrenterghem Y . Effects of CYP3A5 and MDR1 single nucleotide polymorphisms on drug interactions between tacrolimus and fluconazole in renal allograft recipients. Pharmacogenet Genomics 2008; 18: 861–868.

    Article  CAS  Google Scholar 

  40. Iwamoto T, Monma F, Fujieda A, Nakatani K, Katayama N, Okuda M . Hepatic drug interaction between tacrolimus and lansoprazole in a bone marrow transplant patient receiving voriconazole and harboring CYP2C19 and CYP3A5 heterozygous mutations. Clin Ther 2011; 33: 1077–1080.

    Article  CAS  Google Scholar 

  41. Naud J, Nolin TD, Leblond Fa, Pichette V . Current understanding of drug disposition in kidney disease. J Clin Pharmacol 2012; 52: 10S–22S.

    Article  CAS  Google Scholar 

  42. Astellas Pharma US. Tacrolimus (Prograf): prescribing information 2013. Available at https://www.astellas.us/docs/prograf.pdf; last accessed on 3 December 2015.

  43. Miura M, Satoh S, Kagaya H, Saito M, Numakura K, Tsuchiya N et al. Impact of the CYP3A4*1G polymorphism and its combination with CYP3A5 genotypes on tacrolimus pharmacokinetics in renal transplant patients. Pharmacogenomics 2011; 12: 977–984.

    Article  CAS  Google Scholar 

  44. Kroetz DL, Pauli-Magnus C, Hodges LM, Huang CC, Kawamoto M, Johns SJ et al. Sequence diversity and haplotype structure in the human ABCB1 (MDR1, multidrug resistance transporter) gene. Pharmacogenetics 2003; 13: 481–494.

    Article  CAS  PubMed Central  Google Scholar 

  45. Yi S-Y, Hong K-S, Lim H-S, Chung J-Y, Oh D-S, Kim J-R et al. A variant 2677A allele of the MDR1 gene affects fexofenadine disposition. Clin Pharmacol Ther 2004; 76: 418–427.

    Article  CAS  Google Scholar 

  46. Shi Y, Li Y, Tang J, Zhang J, Zou Y, Cai B et al. Influence of CYP3A4, CYP3A5 and MDR-1 polymorphisms on tacrolimus pharmacokinetics and early renal dysfunction in liver transplant recipients. Gene 2013; 512: 226–231.

    Article  CAS  Google Scholar 

  47. Santoro AB, Struchiner CJ, Felipe CR, Tedesco-Silva H, Medina-Pestana JO, Suarez-Kurtz G . CYP3A5 genotype, but not CYP3A4*1b, CYP3A4*22, or hematocrit, predicts tacrolimus dose requirements in Brazilian renal transplant patients. Clin Pharmacol Ther 2013; 94: 201–202.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank A Herelixka for managing the clinical database, T Coopmans, J de Loor, M Dekens and T Van Brussel for their technical assistance and our study nurses C Beerten, J De Vis, M Dubois and H Wielandt for their work in the Biobank program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D R J Kuypers.

Ethics declarations

Competing interests

DK has received consulting fees and research grants from Astellas. The remaining authors declared no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the The Pharmacogenomics Journal website

Supplementary information

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vanhove, T., Annaert, P., Lambrechts, D. et al. Effect of ABCB1 diplotype on tacrolimus disposition in renal recipients depends on CYP3A5 and CYP3A4 genotype. Pharmacogenomics J 17, 556–562 (2017). https://doi.org/10.1038/tpj.2016.49

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/tpj.2016.49

This article is cited by

Search

Quick links