Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Effect of gene polymorphims on the warfarin treatment at initial stage

Subjects

Abstract

The adverse reactions of warfarin that were found mainly occurred in the first month. This study was carried out to observe the effect of gene polymorphisms on the warfarin therapy at the initial stage. Four-hundred and sixty Chinese patients began warfarin treatment with daily 2.5 mg after heart valve replacement operations were enrolled. The daily international normalized ratio (INR) for anticoagulation were recorded till the seventh day. Blood samples were collected and used to detect genotypes for VKORC1 rs7294, CYP2C9 rs1057910, CYP4F2 rs2108622 and ORM1 rs17650. INR and their changes were compared among genotypes. INR was partially correlated with the VKORC1 rs7294, CYP2C9 rs1057910, CYP4F2 rs2108622 and ORM1 rs17650 polymorphisms from the third, fourth and sixth day on, respectively. VKORC1 rs7294 and CYP4F2 rs2108622 carriers responded lower than the wild genotype, whereas CYP2C9 rs1057910 and ORM1 rs17650 carriers responded higher, respectively. Fifty percent of AA/*1*3/CC/*S*S patients and 16% of AA/*1*1/CC/*S*S patients were over anticoagulation treated with INR >4.0 at the third day. Ninety percent of VKORC1 rs7294 carrier patients have INR <1.63, a mark of the 25% of lower responders of the wild genotype. Our study provided another kind of evidence that VKORC1 rs7294, CYP2C9 rs1057910, CYP4F2 rs2108622 and ORM1 rs17650 affected the action of warfarin in different styles. Patients with AA/*1*1/CC/*S*S, AA/*1*3/CC/*S*S should use a less initial dosage to avoid over anticoagulation, and patients with VKORC1 rs7294 should use larger initial dose to proof an effective therapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Shil AB, Strohm MP . Warfarin pharmacogenetics. N Engl J Med 2009; 360: 2475.

    Article  Google Scholar 

  2. Tatarunas V, Lesauskaite V, Veikutiene A, Grybauskas P, Jakuska P, Jankauskiene L et al. The effect of CYP2C9, VKORC1 and CYP4F2 polymorphism and of clinical factors on warfarin dosage during initiation and long-term treatment after heart valve surgery. J Thromb Thrombolysis 2014; 37: 177–185.

    Article  CAS  PubMed  Google Scholar 

  3. Landefeld CS, Beyth RJ . Anticoagulant-related bleeding: clinical epidemiology, prediction, and prevention. Am J Med 1993; 95: 315–328.

    Article  CAS  PubMed  Google Scholar 

  4. White RH, Beyth RJ, Zhou H, Romano PS . Major bleeding after hospitalization for deep-venous thrombosis. Am J Med 1999; 107: 414–424.

    Article  CAS  PubMed  Google Scholar 

  5. Lesko LJ . The critical path of warfarin dosing: finding an optimal dosing strategy using pharmacogenetics. Clin Pharmacol Ther 2008; 84: 301–303.

    Article  CAS  PubMed  Google Scholar 

  6. Lal S, Jada SR, Xiang X, Lim WT, Lee EJ, Chowbay B . Pharmacogenetics of target genes across the warfarin pharmacological pathway. Clin Pharmacokinet 2006; 45: 1189–1200.

    Article  CAS  PubMed  Google Scholar 

  7. Garcia DA, Hylek E . Warfarin pharmacogenetics. N Engl J Med 2009; 360: 2474–2475.

    Article  CAS  PubMed  Google Scholar 

  8. Wysowski DK, Nourjah P, Swartz L . Bleeding complications with warfarin use: a prevalent adverse effect resulting in regulatory action. Arch Intern Med 2007; 167: 1414–1419.

    Article  PubMed  Google Scholar 

  9. Gage BF, Lesko LJ . Pharmacogenetics of warfarin: regulatory, scientific, and clinical issues. J Thromb Thrombolysis 2008; 25: 45–51.

    Article  CAS  PubMed  Google Scholar 

  10. Shehab N, Sperling LS, Kegler SR, Budnitz DS . National estimates of emergency department visits for hemorrhage-related adverse events from clopidogrel plus aspirin and from warfarin. Arch Intern Med 2010; 170: 1926–1933.

    Article  PubMed  Google Scholar 

  11. Rieder MJ, Reiner AP, Gage BF, Nickerson DA, Eby CS, McLeod HL et al. Effect of VKORC1 haplotypes on transcriptional regulation and warfarin dose. N Engl J Med 2005; 352: 2285–2293.

    Article  CAS  PubMed  Google Scholar 

  12. Takahashi H, Wilkinson GR, Nutescu EA, Morita T, Ritchie MD, Scordo MG et al. Different contributions of polymorphisms in VKORC1 and CYP2C9 to intra- and inter-population differences in maintenance dose of warfarin in Japanese, Caucasians and African-Americans. Pharmacogenet Genomics 2006; 16: 101–110.

    Article  CAS  PubMed  Google Scholar 

  13. Lee MT, Chen CH, Chou CH, Lu LS, Chuang HP, Chen YT et al. Genetic determinants of warfarin dosing in the Han-Chinese population. Pharmacogenomics 2009; 10: 1905–1913.

    Article  CAS  PubMed  Google Scholar 

  14. Luxembourg B, Schneider K, Sittinger K, Toennes SW, Seifried E, Lindhoff-Last E et al. Impact of pharmacokinetic (CYP2C9) and pharmacodynamic (VKORC1, F7, GGCX, CALU, EPHX1) gene variants on the initiation and maintenance phases of phenprocoumon therapy. Thromb Haemost 2011; 105: 169–180.

    Article  CAS  PubMed  Google Scholar 

  15. Cooper GM, Johnson JA, Langaee TY, Feng H, Stanaway IB, Schwarz UI et al. A genome-wide scan for common genetic variants with a large influence on warfarin maintenance dose. Blood 2008; 112: 1022–1027.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Caldwell MD, Awad T, Johnson JA, Gage BF, Falkowski M, Gardina P et al. CYP4F2 genetic variant alters required warfarin dose. Blood 2008; 111: 4106–4112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Carlquist JF, Horne BD, Mower C, Park J, Huntinghouse J, McKinney JT et al. An evaluation of nine genetic variants related to metabolism and mechanism of action of warfarin as applied to stable dose prediction. J Thromb Thrombolysis 2010; 30: 358–364.

    Article  CAS  PubMed  Google Scholar 

  18. Borgiani P, Ciccacci C, Forte V, Sirianni E, Novelli L, Bramanti P et al. CYP4F2 genetic variant (rs2108622) significantly contributes to warfarin dosing variability in the Italian population. Pharmacogenomics 2009; 10: 261–266.

    Article  CAS  PubMed  Google Scholar 

  19. Perini JA, Struchiner CJ, Silva-Assuncao E, Suarez-Kurtz G . Impact of CYP4F2 rs2108622 on the stable warfarin dose in an admixed patient cohort. Clin Pharmacol Ther 2010; 87: 417–420.

    Article  CAS  PubMed  Google Scholar 

  20. Shahin MH, Khalifa SI, Gong Y, Hammad LN, Sallam MT, El SM et al. Genetic and nongenetic factors associated with warfarin dose requirements in Egyptian patients. Pharmacogenet Genomics 2011; 21: 130–135.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wang LS, Shang JJ, Shi SY, Zhang YQ, Lin J, Guo ZH et al. Influence of ORM1 polymorphisms on the maintenance stable warfarin dosage. Eur J Clin Pharmacol 2013; 69: 1113–1120.

    Article  CAS  PubMed  Google Scholar 

  22. Gage BF, Eby C, Johnson JA, Deych E, Rieder MJ, Ridker PM et al. Use of pharmacogenetic and clinical factors to predict the therapeutic dose of warfarin. Clin Pharmacol Ther 2008; 84: 326–331.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Holbrook A, Schulman S, Witt DM, Vandvik PO, Fish J, Kovacs MJ et al. Evidence-based management of anticoagulant therapy: Antithrombotic Therapy and Prevention of Thrombosis, 9th ed: American College of Chest Physicians Evidence-Based Clinical Practice Guidelines. Chest 2012; 141: e152S–e184S.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Holbrook AM, Pereira JA, Labiris R, McDonald H, Douketis JD, Crowther M et al. Systematic overview of warfarin and its drug and food interactions. Arch Intern Med 2005; 165: 1095–1106.

    Article  CAS  PubMed  Google Scholar 

  25. Tadros R, Shakib S . Warfarin—indications risks and drug interactions. Aust Fam Physician 2010; 39: 476–479.

    PubMed  Google Scholar 

  26. Nutescu E, Chuatrisorn I, Hellenbart E . Drug and dietary interactions of warfarin and novel oral anticoagulants: an update. J Thromb Thrombolysis 2011; 31: 326–343.

    Article  CAS  PubMed  Google Scholar 

  27. Tan SL, Li Z, Song GB, Liu LM, Zhang W, Peng J et al. Development and comparison of a new personalized warfarin stable dose prediction algorithm in Chinese patients undergoing heart valve replacement. Pharmazie 2012; 67: 930–937.

    CAS  PubMed  Google Scholar 

  28. Klein TE, Altman RB, Eriksson N, Gage BF, Kimmel SE, Lee MT et al. Estimation of the warfarin dose with clinical and pharmacogenetic data. N Engl J Med 2009; 360: 753–764.

    Article  CAS  PubMed  Google Scholar 

  29. Song Q, Wen A, Ding L, Dai L, Yang L, Qi X . HPLC-APCI-MS for the determination of vitamin K(1) in human plasma: method and clinical application. J Chromatogr B Analyt Technol Biomed Life Sci 2008; 875: 541–545.

    Article  CAS  PubMed  Google Scholar 

  30. Ansell J, Hirsh J, Dalen J, Bussey H, Anderson D, Poller L et al. Managing oral anticoagulant therapy. Chest 2001; 119: 22S–38S.

    Article  CAS  PubMed  Google Scholar 

  31. Rost S, Fregin A, Ivaskevicius V, Conzelmann E, Hortnagel K, Pelz HJ et al. Mutations in VKORC1 cause warfarin resistance and multiple coagulation factor deficiency type 2. Nature 2004; 427: 537–541.

    Article  CAS  PubMed  Google Scholar 

  32. Lindh JD, Holm L, Andersson ML, Rane A . Influence of CYP2C9 genotype on warfarin dose requirements—a systematic review and meta-analysis. Eur J Clin Pharmacol 2009; 65: 365–375.

    Article  CAS  PubMed  Google Scholar 

  33. McDonald MG, Rieder MJ, Nakano M, Hsia CK, Rettie AE . CYP4F2 is a vitamin K1 oxidase: An explanation for altered warfarin dose in carriers of the V433M variant. Mol Pharmacol 2009; 75: 1337–1346.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Liang R, Wang C, Zhao H, Huang J, Hu D, Sun Y . Influence of CYP4F2 genotype on warfarin dose requirement-a systematic review and meta-analysis. Thromb Res 2012; 130: 38–44.

    Article  CAS  PubMed  Google Scholar 

  35. Kishino S, Nomura A, Di ZS, Sugawara M, Iseki K, Kakinoki S et al. Alpha-1-acid glycoprotein concentration and the protein binding of disopyramide in healthy subjects. J Clin Pharmacol 1995; 35: 510–514.

    Article  CAS  PubMed  Google Scholar 

  36. Eap CB, Cuendet C, Baumann P . Binding of amitriptyline to alpha 1-acid glycoprotein and its variants. J Pharm Pharmacol 1988; 40: 767–770.

    Article  CAS  PubMed  Google Scholar 

  37. Linkins LA, Choi PT, Douketis JD . Clinical impact of bleeding in patients taking oral anticoagulant therapy for venous thromboembolism: a meta-analysis. Ann Intern Med 2003; 139: 893–900.

    Article  PubMed  Google Scholar 

  38. Hylek EM, Evans-Molina C, Shea C, Henault LE, Regan S . Major hemorrhage and tolerability of warfarin in the first year of therapy among elderly patients with atrial fibrillation. Circulation 2007; 115: 2689–2696.

    Article  CAS  PubMed  Google Scholar 

  39. Douketis JD, Foster GA, Crowther MA, Prins MH, Ginsberg JS . Clinical risk factors and timing of recurrent venous thromboembolism during the initial 3 months of anticoagulant therapy. Arch Intern Med 2000; 160: 3431–3436.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

All authors have completed the Unified Competing Interest form at http://www.icmje.org/coi_disclosure.pdf (available on request from the corresponding author) and declare: this study was funded by the National Scientific Foundation of China (No. 81072707, 81472031, 81273595 and 81101331), 863 Project (No. 2012AA02A518). No other relationships or activities exist that could have influenced the submitted work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L S Wang.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Author contributions

JL helped to collect and analyze the data, and to write the manuscript. HHJ, DKW and HMY helped to coordinate the study. YXZ helped to collect the samples. XL helped to analyze the data. ZYL and ZG helped to collect the data. YLZ helped to perform the statistical analysis. YCW, WZ and HHZ helped to coordinate the study. LSW has designed and organized the study, has analyzed and interpreted the data, and writen the manuscript and confirmed the final approval of the version.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, J., Jiang, H., Wu, D. et al. Effect of gene polymorphims on the warfarin treatment at initial stage. Pharmacogenomics J 17, 47–52 (2017). https://doi.org/10.1038/tpj.2015.81

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/tpj.2015.81

This article is cited by

Search

Quick links