Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

PPP3CC gene: a putative modulator of antidepressant response through the B-cell receptor signaling pathway

Abstract

Antidepressant pharmacogenetics represents a stimulating, but often discouraging field. The present study proposes a combination of several methodologies across three independent samples. Genes belonging to monoamine, neuroplasticity, circadian rhythm and transcription factor pathways were investigated in two samples (n=369 and 88) with diagnosis of major depression who were treated with antidepressants. Phenotypes were response, remission and treatment-resistant depression. Logistic regression including appropriate covariates was performed. Genes associated with outcomes were investigated in the STAR*D (Sequenced Treatment Alternatives to Relieve Depression) genome-wide study (n=1861). Top genes were further studied through a pathway analysis. In both original samples, markers associated with outcomes were concentrated in the PPP3CC gene. Other interesting findings were particularly in the HTR2A gene in one original sample and the STAR*D. The B-cell receptor signaling pathway proved to be the putative mediator of PPP3CC’s effect on antidepressant response (P=0.03). Among innovative candidates, PPP3CC, involved in the regulation of immune system and synaptic plasticity, seems promising for further investigation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Judd LL, Akiskal HS, Zeller PJ, Paulus M, Leon AC, Maser JD et al. Psychosocial disability during the long-term course of unipolar major depressive disorder. Arch Gen Psychiatry 2000; 57: 375–380.

    Article  CAS  PubMed  Google Scholar 

  2. Kemp AH, Gordon E, Rush AJ, Williams LM . Improving the prediction of treatment response in depression: integration of clinical, cognitive, psychophysiological, neuroimaging, and genetic measures. CNS Spectr 2008; 13: 1066–1086, quiz 87-8.

    Article  PubMed  Google Scholar 

  3. Tansey KE, Guipponi M, Hu X, Domenici E, Lewis G, Malafosse A et al. Contribution of common genetic variants to antidepressant response. Biol Psychiatry 2013; 73: 679–682.

    Article  CAS  PubMed  Google Scholar 

  4. Fabbri C, Di Girolamo G, Serretti A . Pharmacogenetics of antidepressant drugs: an update after almost 20 years of research. Am J Med Genet B Neuropsychiatr Genet 2013; 162B: 487–520.

    Article  PubMed  Google Scholar 

  5. Racagni G, Popoli M . Cellular and molecular mechanisms in the long-term action of antidepressants. Dialogues Clin Neurosci 2008; 10: 385–400.

    PubMed  PubMed Central  Google Scholar 

  6. Courtet P, Olie E . Circadian dimension and severity of depression. Eur Neuropsychopharmacol 2012; 22 (Suppl 3): S476–S481.

    Article  CAS  PubMed  Google Scholar 

  7. Porcelli S, Drago A, Fabbri C, Gibiino S, Calati R, Serretti A . Pharmacogenetics of antidepressant response. J Psychiatry Neurosci 2011; 36: 87–113.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Pandey DK, Mahesh R, Kumar AA, Rao VS, Arjun M, Rajkumar R . A novel 5-HT(2 A) receptor antagonist exhibits antidepressant-like effects in a battery of rodent behavioural assays: approaching early-onset antidepressants. Pharmacol Biochem Behav 2010; 94: 363–373.

    Article  CAS  PubMed  Google Scholar 

  9. Fountoulakis KN, Kelsoe JR, Akiskal H . Receptor targets for antidepressant therapy in bipolar disorder: an overview. JAffect Disord 2012; 138: 222–238.

    Article  CAS  Google Scholar 

  10. McMahon FJ, Buervenich S, Charney D, Lipsky R, Rush AJ, Wilson AF et al. Variation in the gene encoding the serotonin 2 A receptor is associated with outcome of antidepressant treatment. Am J Hum Genet 2006; 78: 804–814.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Peters EJ, Slager SL, Jenkins GD, Reinalda MS, Garriock HA, Shyn SI et al. Resequencing of serotonin-related genes and association of tagging SNPs to citalopram response. Pharmacogenet Genomics 2009; 19: 1–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Uher R, Huezo-Diaz P, Perroud N, Smith R, Rietschel M, Mors O et al. Genetic predictors of response to antidepressants in the GENDEP project. Pharmacogenomics J 2009; 9: 225–233.

    Article  CAS  PubMed  Google Scholar 

  13. Kocabas NA, Faghel C, Barreto M, Kasper S, Linotte S, Mendlewicz J et al. The impact of catechol-O-methyltransferase SNPs and haplotypes on treatment response phenotypes in major depressive disorder: a case-control association study. Int Clin Psychopharmacol 2010; 25: 218–227.

    Article  PubMed  Google Scholar 

  14. Perlis RH, Fijal B, Adams DH, Sutton VK, Trivedi MH, Houston JP . Variation in catechol-O-methyltransferase is associated with duloxetine response in a clinical trial for major depressive disorder. Biol Psychiatry 2009; 65: 785–791.

    Article  CAS  PubMed  Google Scholar 

  15. Ji Y, Biernacka J, Snyder K, Drews M, Pelleymounter LL, Colby C et al. Catechol O-methyltransferase pharmacogenomics and selective serotonin reuptake inhibitor response. Pharmacogenomics J 2012; 12: 78–85.

    Article  CAS  PubMed  Google Scholar 

  16. Licinio J, Dong C, Wong ML . Novel sequence variations in the brain-derived neurotrophic factor gene and association with major depression and antidepressant treatment response. Arch Gen Psychiatry 2009; 66: 488–497.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Domschke K, Lawford B, Laje G, Berger K, Young R, Morris P et al. Brain-derived neurotrophic factor ( BDNF) gene: no major impact on antidepressant treatment response. Int JNeuropsychopharmacol 2010; 13: 93–101.

    Article  CAS  Google Scholar 

  18. Kocabas NA, Antonijevic I, Faghel C, Forray C, Kasper S, Lecrubier Y et al. Brain-derived neurotrophic factor gene polymorphisms: influence on treatment response phenotypes of major depressive disorder. Int Clin Psychopharmacol 2011; 26: 1–10.

    Article  PubMed  Google Scholar 

  19. Beaulieu JM, Gainetdinov RR, Caron MG . Akt/GSK3 signaling in the action of psychotropic drugs. Annu Rev Pharmacol Toxicol 2009; 49: 327–347.

    Article  CAS  PubMed  Google Scholar 

  20. Grimes CA, Jope RS . The multifaceted roles of glycogen synthase kinase 3beta in cellular signaling. Prog Neurobiol 2001; 65: 391–426.

    Article  CAS  PubMed  Google Scholar 

  21. Maes M, Fisar Z, Medina M, Scapagnini G, Nowak G, Berk M . New drug targets in depression: inflammatory, cell-mediated immune, oxidative and nitrosative stress, mitochondrial, antioxidant, and neuroprogressive pathways. And new drug candidates—Nrf2 activators and GSK-3 inhibitors. Inflammopharmacology 2012; 20: 127–150.

    Article  CAS  PubMed  Google Scholar 

  22. Tsai SJ, Liou YJ, Hong CJ, Yu YW, Chen TJ . Glycogen synthase kinase-3beta gene is associated with antidepressant treatment response in Chinese major depressive disorder. Pharmacogenomics J 2008; 8: 384–390.

    Article  CAS  PubMed  Google Scholar 

  23. Murakami M, Kambe T, Shimbara S, Kudo I . Functional coupling between various phospholipase A2s and cyclooxygenases in immediate and delayed prostanoid biosynthetic pathways. J Biol Chem 1999; 274: 3103–3115.

    Article  CAS  PubMed  Google Scholar 

  24. O'Banion MK . Cyclooxygenase-2: molecular biology, pharmacology, and neurobiology. Crit Rev Neurobiol 1999; 13: 45–82.

    Article  CAS  PubMed  Google Scholar 

  25. Garcia MC, Kim HY . Mobilization of arachidonate and docosahexaenoate by stimulation of the 5-HT2A receptor in rat C6 glioma cells. Brain Res 1997; 768: 43–48.

    Article  CAS  PubMed  Google Scholar 

  26. Qu Y, Villacreses N, Murphy DL, Rapoport SI . 5-HT2A/2C receptor signaling via phospholipase A2 and arachidonic acid is attenuated in mice lacking the serotonin reuptake transporter. Psychopharmacology 2005; 180: 12–20.

    Article  CAS  PubMed  Google Scholar 

  27. Basselin M, Chang L, Bell JM, Rapoport SI . Chronic lithium chloride administration attenuates brain NMDA receptor-initiated signaling via arachidonic acid in unanesthetized rats. Neuropsychopharmacology 2006; 31: 1659–1674.

    Article  CAS  PubMed  Google Scholar 

  28. Rao JS, Ertley RN, Lee HJ, Rapoport SI, Bazinet RP . Chronic fluoxetine upregulates activity, protein and mRNA levels of cytosolic phospholipase A2 in rat frontal cortex. Pharmacogenomics J 2006; 6: 413–420.

    Article  CAS  PubMed  Google Scholar 

  29. Pae CU, Yu HS, Kim JJ, Lee CU, Lee SJ, Lee KU et al. BanI polymorphism of the cytosolic phospholipase A2 gene and mood disorders in the Korean population. Neuropsychobiology 2004; 49: 185–188.

    Article  CAS  PubMed  Google Scholar 

  30. Xia Z, Storm DR . The role of calmodulin as a signal integrator for synaptic plasticity. Nat Rev Neurosci 2005; 6: 267–276.

    Article  CAS  PubMed  Google Scholar 

  31. Krishnadas R, Cavanagh J . Depression: an inflammatory illness? J Neurol Neurosurg Psychiatry 2012; 83: 495–502.

    Article  PubMed  Google Scholar 

  32. Janssen DG, Caniato RN, Verster JC, Baune BT . A psychoneuroimmunological review on cytokines involved in antidepressant treatment response. Hum Psychopharmacol 2010; 25: 201–215.

    Article  CAS  PubMed  Google Scholar 

  33. Edgar VA, Cremaschi GA, Sterin-Borda L, Genaro AM . Altered expression of autonomic neurotransmitter receptors and proliferative responses in lymphocytes from a chronic mild stress model of depression: effects of fluoxetine. Brain Behav Immun 2002; 16: 333–350.

    Article  CAS  PubMed  Google Scholar 

  34. McAuley EZ, Scimone A, Tiwari Y, Agahi G, Mowry BJ, Holliday EG et al. Identification of sialyltransferase 8B as a generalized susceptibility gene for psychotic and mood disorders on chromosome 15q25-26. PloS One 2012; 7: e38172.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ko CH, Takahashi JS . Molecular components of the mammalian circadian clock. Hum Mol Genet 2006, 15 Spec No 2: R271–R277.

    Article  Google Scholar 

  36. Terracciano A, Tanaka T, Sutin AR, Sanna S, Deiana B, Lai S et al. Genome-wide association scan of trait depression. Biol Psychiatry 2010; 68: 811–817.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Garriock HA, Kraft JB, Shyn SI, Peters EJ, Yokoyama JS, Jenkins GD et al. A genomewide association study of citalopram response in major depressive disorder. Biol Psychiatry 2010; 67: 133–138.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Hughes AT, Guilding C, Piggins HD . Neuropeptide signaling differentially affects phase maintenance and rhythm generation in SCN and extra-SCN circadian oscillators. PloS One 2011; 6: e18926.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Soria V, Martinez-Amoros E, Escaramis G, Valero J, Perez-Egea R, Garcia C et al. Differential association of circadian genes with mood disorders: CRY1 and NPAS2 are associated with unipolar major depression and CLOCK and VIP with bipolar disorder. Neuropsychopharmacology 2010; 35: 1279–1289.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Esslinger C, Kirsch P, Haddad L, Mier D, Sauer C, Erk S et al. Cognitive state and connectivity effects of the genome-wide significant psychosis variant in ZNF804A. NeuroImage 2011; 54: 2514–2523.

    Article  PubMed  Google Scholar 

  41. Lencz T, Szeszko PR, DeRosse P, Burdick KE, Bromet EJ, Bilder RM et al. A schizophrenia risk gene, ZNF804A, influences neuroanatomical and neurocognitive phenotypes. Neuropsychopharmacology 2010; 35: 2284–2291.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Lett TA, Zai CC, Tiwari AK, Shaikh SA, Likhodi O, Kennedy JL et al. ANK3, CACNA1C and ZNF804A gene variants in bipolar disorders and psychosis subphenotype. World J Biol Psychiatry 2011; 12: 392–397.

    Article  PubMed  Google Scholar 

  43. Williams HJ, Craddock N, Russo G, Hamshere ML, Moskvina V, Dwyer S et al. Most genome-wide significant susceptibility loci for schizophrenia and bipolar disorder reported to date cross-traditional diagnostic boundaries. Hum Mol Gen 2011; 20: 387–391.

    Article  CAS  PubMed  Google Scholar 

  44. Shi J, Potash JB, Knowles JA, Weissman MM, Coryell W, Scheftner WA et al. Genome-wide association study of recurrent early-onset major depressive disorder. Mol Psychiatry 2011; 16: 193–201.

    Article  CAS  PubMed  Google Scholar 

  45. Shyn SI, Shi J, Kraft JB, Potash JB, Knowles JA, Weissman MM et al. Novel loci for major depression identified by genome-wide association study of Sequenced Treatment Alternatives to Relieve Depression and meta-analysis of three studies. Mol Psychiatry 2011; 16: 202–215.

    Article  CAS  PubMed  Google Scholar 

  46. Zhou X, Qyang Y, Kelsoe JR, Masliah E, Geyer MA . Impaired postnatal development of hippocampal dentate gyrus in Sp4 null mutant mice. Genes Brain Beh 2007; 6: 269–276.

    Article  Google Scholar 

  47. Mao X, Moerman-Herzog AM, Wang W, Barger SW . Differential transcriptional control of the superoxide dismutase-2 kappaB element in neurons and astrocytes. J Biol Chem 2006; 281: 35863–35872.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Mao X, Yang SH, Simpkins JW, Barger SW . Glutamate receptor activation evokes calpain-mediated degradation of Sp3 and Sp4, the prominent Sp-family transcription factors in neurons. J neurochem 2007; 100: 1300–1314.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Souery D, Oswald P, Massat I, Bailer U, Bollen J, Demyttenaere K et al. Clinical factors associated with treatment resistance in major depressive disorder: results from a European multicenter study. J Clin Psychiatry 2007; 68: 1062–1070.

    Article  PubMed  Google Scholar 

  50. Fabbri C, Marsano A, Balestri M, De Ronchi D, Serretti A . Clinical features and drug induced side effects in early versus late antidepressant responders. J Psychiatric Res 2013; 47: 1309–1318.

    Article  Google Scholar 

  51. Howland RH . Sequenced Treatment Alternatives to Relieve Depression (STAR*D). Part 1: study design. J Psychosoc Nurs Ment Health Serv 2008; 46: 21–24.

    Article  PubMed  Google Scholar 

  52. Trivedi MH, Rush AJ, Ibrahim HM, Carmody TJ, Biggs MM, Suppes T et al. The Inventory of Depressive Symptomatology, Clinician Rating (IDS-C) and Self-Report (IDS-SR), and the Quick Inventory of Depressive Symptomatology, Clinician Rating (QIDS-C) and Self-Report (QIDS-SR) in public sector patients with mood disorders: a psychometric evaluation. Psychol Med 2004; 34: 73–82.

    Article  CAS  PubMed  Google Scholar 

  53. CHMP. Note for guidance on clinical investigation of medicinal products in the treatment of depression 2002. 2002; Available from http://www.emea.europa.eu/pdfs/human/ewp/051897en.pdf.

  54. Thase ME . The need for clinically relevant research on treatment-resistant depression. J Clin Psychiatry 2001; 62: 221–224.

    Article  CAS  PubMed  Google Scholar 

  55. Fabbri C, Drago A, Serretti A . Early antidepressant efficacy modulation by glutamatergic gene variants in the STAR()D. Euro Neuropsychopharmacol 2012; 8 (2): 131–141.

    Google Scholar 

  56. Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet 2007; 81: 559–575.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Anderson CA, Pettersson FH, Clarke GM, Cardon LR, Morris AP, Zondervan KT . Data quality control in genetic case-control association studies. Nat Protoc 2010; 5: 1564–1573.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Maes M, Stevens WJ, DeClerck LS, Bridts CH, Peeters D, Schotte C et al. A significantly increased number and percentage of B cells in depressed subjects: results of flow cytometric measurements. J Affect Disord 1992; 24: 127–134.

    Article  CAS  PubMed  Google Scholar 

  59. Hernandez ME, Martinez-Fong D, Perez-Tapia M, Estrada-Garcia I, Estrada-Parra S, Pavon L . Evaluation of the effect of selective serotonin-reuptake inhibitors on lymphocyte subsets in patients with a major depressive disorder. Eur Neuropsychopharmacol 2010; 20: 88–95.

    Article  CAS  PubMed  Google Scholar 

  60. Gerber DJ, Hall D, Miyakawa T, Demars S, Gogos JA, Karayiorgou M et al. Evidence for association of schizophrenia with genetic variation in the 8p21.3 gene, PPP3CC, encoding the calcineurin gamma subunit. Proc Natl Acad Sci USA 2003; 100: 8993–8998.

    Article  CAS  PubMed  Google Scholar 

  61. Mathieu F, Miot S, Etain B, El Khoury MA, Chevalier F, Bellivier F et al. Association between the PPP3CC gene, coding for the calcineurin gamma catalytic subunit, and bipolar disorder. Behav Brain Funct 2008; 4: 2.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Horiuchi Y, Ishiguro H, Koga M, Inada T, Iwata N, Ozaki N et al. Support for association of the PPP3CC gene with schizophrenia. Mol Psychiatry 2007; 12: 891–893.

    Article  CAS  PubMed  Google Scholar 

  63. Yu JJ, Zhang Y, Wang Y, Wen ZY, Liu XH, Qin J et al. Inhibition of calcineurin in the prefrontal cortex induced depressive-like behavior through mTOR signaling pathway. Psychopharmacology 2013; 225: 361–372.

    Article  CAS  PubMed  Google Scholar 

  64. Crozatier C, Farley S, Mansuy IM, Dumas S, Giros B, Tzavara ET . Calcineurin (protein phosphatase 2B) is involved in the mechanisms of action of antidepressants. Neuroscience 2007; 144: 1470–1476.

    Article  CAS  PubMed  Google Scholar 

  65. Lucae S, Ising M, Horstmann S, Baune BT, Arolt V, Muller-Myhsok B et al. HTR2A gene variation is involved in antidepressant treatment response. Eur Neuropsychopharmacol 2010; 20: 65–68.

    Article  CAS  PubMed  Google Scholar 

  66. Giegling I, Hartmann AM, Moller HJ, Rujescu D . Anger- and aggression-related traits are associated with polymorphisms in the 5-HT-2 A gene. J Affect Disord 2006; 96: 75–81.

    Article  CAS  PubMed  Google Scholar 

  67. Viikki ML, Jarventausta K, Leinonen E, Huuhka M, Mononen N, Lehtimaki T et al. BDNF polymorphism rs11030101 is associated with the efficacy of electroconvulsive therapy in treatment-resistant depression. Psychiatric Genet 2013; 23: 134–136.

    Article  CAS  Google Scholar 

  68. Miller MW, Wolf EJ, Logue MW, Baldwin CT . The retinoid-related orphan receptor alpha (RORA) gene and fear-related psychopathology. J Affect Disord 2013; 151: 702–708.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Lee KW, Woon PS, Teo YY, Sim K . Genome wide association studies (GWAS) and copy number variation (CNV) studies of the major psychoses: what have we learnt? Neurosci Biobehav Rev 2012; 36: 556–571.

    Article  CAS  PubMed  Google Scholar 

  70. Fornito A, Bullmore ET . Connectomic intermediate phenotypes for psychiatric disorders. Front Psychiatry 2012; 3: 32.

    PubMed  PubMed Central  Google Scholar 

  71. Hildebrandt H, Muhlenhoff M, Weinhold B, Gerardy-Schahn R . Dissecting polysialic acid and NCAM functions in brain development. J Neurochem 2007; 103 (Suppl 1): 56–64.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Data and biomaterials were obtained from the limited-access data sets distributed from the NIH-supported ‘Sequenced Treatment Alternatives to Relieve Depression' (STAR*D). STAR*D focused on non-psychotic major depressive disorder in adults seen in outpatient settings. The primary purpose of this research study was to determine which treatments work best if the first treatment with medication does not produce an acceptable response This study was supported by NIMH Contract No. N01MH90003 to the University of Texas Southwestern Medical Center. The ClinicalTrials.gov identifier is NCT00021528. We thank Manuel Mayhaus (University of Saarlandes, Germany) for technical assistance with Sequenom MassArray platform.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A Serretti.

Ethics declarations

Competing interests

Dr Serretti is or has been a consultant/speaker for Abbott, Astra Zeneca, Clinical Data, Boheringer, Bristol Myers Squibb, Eli Lilly, GlaxoSmithKline, Janssen, Lundbeck, Pfizer, Sanofi, and Servier. The other authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the The Pharmacogenomics Journal website

Supplementary information

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fabbri, C., Marsano, A., Albani, D. et al. PPP3CC gene: a putative modulator of antidepressant response through the B-cell receptor signaling pathway. Pharmacogenomics J 14, 463–472 (2014). https://doi.org/10.1038/tpj.2014.15

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/tpj.2014.15

This article is cited by

Search

Quick links