Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Pharmacogenomic update on multiple sclerosis: a focus on actual and new therapeutic strategies

Abstract

Multiple sclerosis (MS) is an inflammatory and demyelinating disease of central nervous system comprising several subtypes. Pharmacological treatment involves only few drugs. Among these, interferon beta (IFN-β) and glatiramer acetate were the most used. Although evidence supports the efficacy of these agents in treating MS symptoms, actual studies allowed to introduce new innovative drugs in clinical practice. Applying pharmacogenetic approach to MS, IFN-β and several other immune pathways were abundantly investigated. Numerous reports identified some promising therapy markers but only few markers have emerged as clinically useful. This may be partially due to differences in clinical and methodological criteria in the studies. Indeed, responder and non-responder definitions lack standardized clinical definition. The goal of this review is to treat advances in research on the pharmacogenetic markers of MS drugs and to highlight possible correlations between type of responses and genetic profile, with regard to clinical and methodological discrepancies in the studies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Borisow N, Doring A, Pfueller CF, Paul F, Dorr J, Hellwig K . Expert recommendations to personalization of medical approaches in treatment of multiple sclerosis: an overview of family planning and pregnancy. EPMA J 2012; 3: 9.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Rejdak K, Jackson S, Giovannoni G . Multiple sclerosis: a practical overview for clinicians. Br Med Bull 2010; 95: 79–104.

    Article  PubMed  Google Scholar 

  3. Galetta SL, Markowitz C, Lee AG . Immunomodulatory agents for the treatment of relapsing multiple sclerosis: a systematic review. Arch Intern Med 2002; 162: 2161–2169.

    Article  CAS  PubMed  Google Scholar 

  4. Polman CH, Reingold SC, Banwell B, Clanet M, Cohen JA, Filippi M et al. Diagnostic criteria for multiple sclerosis: 2010 revisions to the McDonald criteria. Ann Neurol 2011; 69: 292–302.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Trojano M, Liguori M, Paolicelli D, Zimatore GB, De Robertis F, Avolio C et al. Interferon beta in relapsing-remitting multiple sclerosis: an independent postmarketing study in southern Italy. Mult Scler 2003; 9: 451–457.

    Article  CAS  PubMed  Google Scholar 

  6. Castro-Borrero W, Graves D, Frohman TC, Flores AB, Hardeman P, Logan D et al. Current and emerging therapies in multiple sclerosis: a systematic review. Ther Adv Neurol Disord 2012; 5: 205–220.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Kleinschnitz C, Meuth SG, Kieseier BC, Wiendl H . Immunotherapeutic approaches in MS: update on pathophysiology and emerging agents or strategies 2006. Endocr Metab Immune Disord Drug Targets 2007; 7: 35–63.

    Article  CAS  PubMed  Google Scholar 

  8. Farrell RA, Giovannoni G . Current and future role of interferon beta in the therapy of multiple sclerosis. J Interferon Cytokine Res 2010; 30: 715–726.

    Article  CAS  PubMed  Google Scholar 

  9. Trapp BD, Peterson J, Ransohoff RM, Rudick R, Mork S, Bo L . Axonal transection in the lesions of multiple sclerosis. N Engl J Med 1998; 338: 278–285.

    Article  CAS  PubMed  Google Scholar 

  10. Leary SM, Miller DH, Stevenson VL, Brex PA, Chard DT, Thompson AJ . Interferon beta-1a in primary progressive MS: an exploratory, randomized, controlled trial. Neurology 2003; 60: 44–51.

    Article  CAS  PubMed  Google Scholar 

  11. Montalban X . Overview of European pilot study of interferon beta-Ib in primary progressive multiple sclerosis. Mult Scler. 2004; 10 (Suppl 1): S62 discussion 62–4.

  12. Wolinsky JS . PROMiSe Trial Study Group. The PROMiSe trial: baseline data review and progress report. Mult Scler 2004; 10 (Suppl 1): S65–S71, discussion S71–2.

    CAS  PubMed  Google Scholar 

  13. Neilley LK, Goodin DS, Goodkin DE, Hauser SL . Side effect profile of interferon beta-1b in MS: results of an open label trial. Neurology 1996; 46: 552–554.

    Article  CAS  PubMed  Google Scholar 

  14. Borden EC, Sen GC, Uze G, Silverman RH, Ransohoff RM, Foster GR et al. Interferons at age 50: past, current and future impact on biomedicine. Nat Rev Drug Discov 2007; 6: 975–990.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Gasperini C, Ruggieri S . New oral drugs for multiple sclerosis. Neurol Sci 2009; 30 (Suppl 2): S179–S183.

    Article  PubMed  Google Scholar 

  16. Neuhaus O, Kieseier BC, Hartung HP . Immunosuppressive agents in multiple sclerosis. Neurotherapeutics 2007; 4: 654–660.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Miller DH, Khan OA, Sheremata WA, Blumhardt LD, Rice GP, Libonati MA et al. A controlled trial of natalizumab for relapsing multiple sclerosis. N Engl J Med 2003; 348: 15–23.

    Article  CAS  PubMed  Google Scholar 

  18. Brassat D, Recher C, Waubant E, Le Page E, Rigal-Huguet F, Laurent G et al. Therapy-related acute myeloblastic leukemia after mitoxantrone treatment in a patient with MS. Neurology 2002; 59: 954–955.

    Article  CAS  PubMed  Google Scholar 

  19. Hartung HP, Aktas O . Oral therapies for multiple sclerosis: are we there yet? Lancet Neurol 2010; 9: 454–457.

    Article  PubMed  Google Scholar 

  20. Brinkmann V . FTY720 (fingolimod) in multiple sclerosis: therapeutic effects in the immune and the central nervous system. Br J Pharmacol 2009; 158: 1173–1182.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Weinstock-Guttman B, Badgett D, Patrick K, Hartrich L, Santos R, Hall D et al. Genomic effects of IFN-beta in multiple sclerosis patients. J Immunol 2003; 171: 2694–2702.

    Article  CAS  PubMed  Google Scholar 

  22. Taniguchi T, Takaoka A . The interferon-alpha/beta system in antiviral responses: a multimodal machinery of gene regulation by the IRF family of transcription factors. Curr Opin Immunol 2002; 14: 111–116.

    Article  CAS  PubMed  Google Scholar 

  23. Weinstock-Guttman B, Bhasi K, Badgett D, Tamano-Blanco M, Minhas M, Feichter J et al. Genomic effects of once-weekly, intramuscular interferon-beta1a treatment after the first dose and on chronic dosing: relationships to 5-year clinical outcomes in multiple sclerosis patients. J Neuroimmunol 2008; 205: 113–125.

    Article  CAS  PubMed  Google Scholar 

  24. Sturzebecher S, Wandinger KP, Rosenwald A, Sathyamoorthy M, Tzou A, Mattar P et al. Expression profiling identifies responder and non-responder phenotypes to interferon-beta in multiple sclerosis. Brain 2003; 126 (Pt 6): 1419–1429.

    Article  CAS  PubMed  Google Scholar 

  25. Lindberg RL, Achtnichts L, Hoffmann F, Kuhle J, Kappos L . Natalizumab alters transcriptional expression profiles of blood cell subpopulations of multiple sclerosis patients. J Neuroimmunol 2008; 194: 153–164.

    Article  CAS  PubMed  Google Scholar 

  26. Comabella M, Craig DW, Morcillo-Suarez C, Rio J, Navarro A, Fernandez M et al. Genome-wide scan of 500 000 single-nucleotide polymorphisms among responders and nonresponders to interferon beta therapy in multiple sclerosis. Arch Neurol 2009; 66: 972–978.

    Article  PubMed  Google Scholar 

  27. Kochs G, Haller OGTP . bound human MxA protein interacts with the nucleocapsids of Thogoto virus (Orthomyxoviridae). J Biol Chem 1999; 274: 4370–4376.

    Article  CAS  PubMed  Google Scholar 

  28. Yu Z, Wang Z, Chen J, Li H, Lin Z, Zhang F et al. GTPase activity is not essential for the interferon-inducible MxA protein to inhibit the replication of hepatitis B virus. Arch Virol 2008; 153: 1677–1684.

    Article  CAS  PubMed  Google Scholar 

  29. Lampe JB, Schneider-Schaulies S, Aguzzi A . Expression of the interferon-induced MxA protein in viral encephalitis. Neuropathol Appl Neurobiol 2003; 29: 273–279.

    Article  CAS  PubMed  Google Scholar 

  30. Al-Masri AN, Heidenreich F, Walter GF . Interferon-induced Mx proteins in brain tissue of multiple sclerosis patients. Eur J Neurol 2009; 16: 721–726.

    Article  CAS  PubMed  Google Scholar 

  31. Pungor E, Files JG, Gabe JD, Do LT, Foley WP, Gray JL et al. A novel bioassay for the determination of neutralizing antibodies to IFN-beta1b. J Interferon Cytokine Res 1998; 18: 1025–1030.

    Article  CAS  PubMed  Google Scholar 

  32. Kracke A, von Wussow P, Al-Masri AN, Dalley G, Windhagen A, Heidenreich F . Mx proteins in blood leukocytes for monitoring interferon beta-1b therapy in patients with MS. Neurology 2000; 54: 193–199.

    Article  CAS  PubMed  Google Scholar 

  33. Serrano-Fernandez P, Moller S, Goertsches R, Fiedler H, Koczan D, Thiesen HJ et al. Time course transcriptomics of IFNB1b drug therapy in multiple sclerosis. Autoimmunity 2010; 43: 172–178.

    Article  CAS  PubMed  Google Scholar 

  34. Hilpert J, Beekman JM, Schwenke S, Kowal K, Bauer D, Lampe J et al. Biological response genes after single dose administration of interferon beta-1b to healthy male volunteers. J Neuroimmunol 2008; 199: 115–125.

    Article  CAS  PubMed  Google Scholar 

  35. Sriram U, Barcellos LF, Villoslada P, Rio J, Baranzini SE, Caillier S et al. Pharmacogenomic analysis of interferon receptor polymorphisms in multiple sclerosis. Genes Immun 2003; 4: 147–152.

    Article  CAS  PubMed  Google Scholar 

  36. Cunningham S, Graham C, Hutchinson M, Droogan A, O'Rourke K, Patterson C et al. Pharmacogenomics of responsiveness to interferon IFN-beta treatment in multiple sclerosis: a genetic screen of 100 type I interferon-inducible genes. Clin Pharmacol Ther 2005; 78: 635–646.

    Article  CAS  PubMed  Google Scholar 

  37. Leyva L, Fernandez O, Fedetz M, Blanco E, Fernandez VE, Oliver B et al. IFNAR1 and IFNAR2 polymorphisms confer susceptibility to multiple sclerosis but not to interferon-beta treatment response. J Neuroimmunol 2005; 163: 165–171.

    Article  CAS  PubMed  Google Scholar 

  38. Oliver B, Mayorga C, Fernandez V, Leyva L, Leon A, Luque G et al. Interferon receptor expression in multiple sclerosis patients. J Neuroimmunol 2007; 183: 225–231.

    Article  CAS  PubMed  Google Scholar 

  39. Serana F, Sottini A, Ghidini C, Zanotti C, Capra R, Cordioli C et al. Modulation of IFNAR1 mRNA expression in multiple sclerosis patients. J Neuroimmunol 2008; 197: 54–62.

    Article  CAS  PubMed  Google Scholar 

  40. Byun E, Caillier SJ, Montalban X, Villoslada P, Fernandez O, Brassat D et al. Genome-wide pharmacogenomic analysis of the response to interferon beta therapy in multiple sclerosis. Arch Neurol 2008; 65: 337–344.

    Article  PubMed  Google Scholar 

  41. Filmus J, Capurro M, Rast J . Glypicans. Genome Biol 2008; 9: 224.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Van Vactor D, Wall DP, Johnson KG . Heparan sulfate proteoglycans and the emergence of neuronal connectivity. Curr Opin Neurobiol 2006; 16: 40–51.

    Article  CAS  PubMed  Google Scholar 

  43. Cenit MD, Blanco-Kelly F, de las Heras V, Bartolome M, de la Concha EG, Urcelay E et al. Glypican 5 is an interferon-beta response gene: a replication study. Mult Scler 2009; 15: 913–917.

    Article  CAS  PubMed  Google Scholar 

  44. Tsunoda T, Takashima Y, Tanaka Y, Fujimoto T, Doi K, Hirose Y et al. Immune-related zinc finger gene ZFAT is an essential transcriptional regulator for hematopoietic differentiation in blood islands. Proc Natl Acad Sci USA 2010; 107: 14199–14204.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Hemmi K, Ma D, Miura Y, Kawaguchi M, Sasahara M, Hashimoto-Tamaoki T et al. A homeodomain-zinc finger protein, ZFHX4, is expressed in neuronal differentiation manner and suppressed in muscle differentiation manner. Biol Pharm Bull 2006; 29: 1830–1835.

    Article  CAS  PubMed  Google Scholar 

  46. Wergeland S, Beiske A, Nyland H, Hovdal H, Jensen D, Larsen JP et al. IL-10 promoter haplotype influence on interferon treatment response in multiple sclerosis. Eur J Neurol 2005; 12: 171–175.

    Article  CAS  PubMed  Google Scholar 

  47. Edwards-Smith CJ, Jonsson JR, Purdie DM, Bansal A, Shorthouse C, Powell EE . Interleukin-10 promoter polymorphism predicts initial response of chronic hepatitis C to interferon alfa. Hepatology 1999; 30: 526–530.

    Article  CAS  PubMed  Google Scholar 

  48. Goertsches RH, Hecker M, Koczan D, Serrano-Fernandez P, Moeller S, Thiesen HJ et al. Long-term genome-wide blood RNA expression profiles yield novel molecular response candidates for IFN-beta-1b treatment in relapsing remitting MS. Pharmacogenomics 2010; 11: 147–161.

    Article  CAS  PubMed  Google Scholar 

  49. Qin H, Wilson CA, Lee SJ, Benveniste EN . IFN-beta-induced SOCS-1 negatively regulates CD40 gene expression in macrophages and microglia. FASEB J 2006; 20: 985–987.

    Article  CAS  PubMed  Google Scholar 

  50. Guerrero AL, Tejero MA, Gutierrez F, Martin-Polo J, Iglesias F, Laherran E et al. Influence of APOE gene polymorphisms on interferon-beta treatment response in multiple sclerosis. Neurologia 2011; 26: 137–142.

    Article  CAS  PubMed  Google Scholar 

  51. Carmona O, Masuet C, Alia P, Moral E, Alonso-Magdalena L, Casado V et al. Apolipoprotein alleles and the response to interferon-beta-1b in multiple sclerosis. Eur Neurol 2011; 65: 132–137.

    Article  CAS  PubMed  Google Scholar 

  52. da Silva AJ, Brickelmaier M, Majeau GR, Lukashin AV, Peyman J, Whitty A et al. Comparison of gene expression patterns induced by treatment of human umbilical vein endothelial cells with IFN-alpha 2b vs. IFN-beta 1a: understanding the functional relationship between distinct type I interferons that act through a common receptor. J Interferon Cytokine Res 2002; 22: 173–188.

    Article  CAS  PubMed  Google Scholar 

  53. Der SD, Zhou A, Williams BR, Silverman RH . Identification of genes differentially regulated by interferon alpha, beta, or gamma using oligonucleotide arrays. Proc Natl Acad Sci USA 1998; 95: 15623–15628.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Paolicelli D, Direnzo V, Trojano M . Review of interferon beta-1b in the treatment of early and relapsing multiple sclerosis. Biologics 2009; 3: 369–376.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Rio J, Nos C, Tintore M, Tellez N, Galan I, Pelayo R et al. Defining the response to interferon-beta in relapsing-remitting multiple sclerosis patients. Ann Neurol 2006; 59: 344–352.

    Article  CAS  PubMed  Google Scholar 

  56. Waubant E, Vukusic S, Gignoux L, Dubief FD, Achiti I, Blanc S et al. Clinical characteristics of responders to interferon therapy for relapsing MS. Neurology 2003; 61: 184–189.

    Article  CAS  PubMed  Google Scholar 

  57. Enevold C, Oturai AB, Sorensen PS, Ryder LP, Koch-Henriksen N, Bendtzen K . Polymorphisms of innate pattern recognition receptors, response to interferon-beta and development of neutralizing antibodies in multiple sclerosis patients. Mult Scler 2010; 16: 942–949.

    Article  CAS  PubMed  Google Scholar 

  58. Wiesemann E, Deb M, Hemmer B, Radeke HH, Windhagen A . Early identification of interferon-beta responders by ex vivo testing in patients with multiple sclerosis. Clin Immunol 2008; 128: 306–313.

    Article  CAS  PubMed  Google Scholar 

  59. van Baarsen LG, Vosslamber S, Tijssen M, Baggen JM, van der Voort LF, Killestein J et al. Pharmacogenomics of interferon-beta therapy in multiple sclerosis: baseline IFN signature determines pharmacological differences between patients. PLoS One 2008; 3: e1927.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Rudick RA, Lee JC, Simon J, Ransohoff RM, Fisher E . Defining interferon beta response status in multiple sclerosis patients. Ann Neurol 2004; 56: 548–555.

    Article  CAS  PubMed  Google Scholar 

  61. Petzold A, Brassat D, Mas P, Rejdak K, Keir G, Giovannoni G et al. Treatment response in relation to inflammatory and axonal surrogate marker in multiple sclerosis. Mult Scler 2004; 10: 281–283.

    Article  CAS  PubMed  Google Scholar 

  62. Stone LA, Frank JA, Albert PS, Bash CN, Calabresi PA, Maloni H et al. Characterization of MRI response to treatment with interferon beta-1b: contrast-enhancing MRI lesion frequency as a primary outcome measure. Neurology 1997; 49: 862–869.

    Article  CAS  PubMed  Google Scholar 

  63. Macciardi F, Boneschi FM, Cohen D . Pharmacogenetics of autoimmune diseases: research issues in the case of multiple sclerosis and the role of IFN-beta. J Autoimmun 2005; 25 (Suppl): 1–5.

    Article  CAS  PubMed  Google Scholar 

  64. Miller A, Shapiro S, Gershtein R, Kinarty A, Rawashdeh H, Honigman S et al. Treatment of multiple sclerosis with copolymer-1 (Copaxone): implicating mechanisms of Th1 to Th2/Th3 immune-deviation. J Neuroimmunol 1998; 92: 113–121.

    Article  CAS  PubMed  Google Scholar 

  65. Kim HJ, Ifergan I, Antel JP, Seguin R, Duddy M, Lapierre Y et al. Type 2 monocyte and microglia differentiation mediated by glatiramer acetate therapy in patients with multiple sclerosis. J Immunol 2004; 172: 7144–7153.

    Article  CAS  PubMed  Google Scholar 

  66. Blanchette F, Neuhaus O . Glatiramer acetate: evidence for a dual mechanism of action. J Neurol 2008; 255 (Suppl 1): 26–36.

    Article  CAS  PubMed  Google Scholar 

  67. Fusco C, Andreone V, Coppola G, Luongo V, Guerini F, Pace E et al. HLA-DRB1*1501 and response to copolymer-1 therapy in relapsing-remitting multiple sclerosis. Neurology 2001; 57: 1976–1979.

    Article  CAS  PubMed  Google Scholar 

  68. Nakanishi H . Microglial functions and proteases. Mol Neurobiol 2003; 27: 163–176.

    Article  CAS  PubMed  Google Scholar 

  69. Beck H, Schwarz G, Schroter CJ, Deeg M, Baier D, Stevanovic S et al. Cathepsin S and an asparagine-specific endoprotease dominate the proteolytic processing of human myelin basic protein in vitro. Eur J Immunol 2001; 31: 3726–3736.

    Article  CAS  PubMed  Google Scholar 

  70. Grossman I, Avidan N, Singer C, Goldstaub D, Hayardeny L, Eyal E et al. Pharmacogenetics of glatiramer acetate therapy for multiple sclerosis reveals drug-response markers. Pharmacogenet Genomics 2007; 17: 657–666.

    Article  CAS  PubMed  Google Scholar 

  71. Pappas DJ, Oksenberg JR . Multiple sclerosis pharmacogenomics: maximizing efficacy of therapy. Neurology 2010; 74 (Suppl 1): S62–S69.

    Article  CAS  PubMed  Google Scholar 

  72. Valenzuela RM, Costello K, Chen M, Said A, Johnson KP, Dhib-Jalbut S . Clinical response to glatiramer acetate correlates with modulation of IFN-gamma and IL-4 expression in multiple sclerosis. Mult Scler 2007; 13: 754–762.

    Article  CAS  PubMed  Google Scholar 

  73. Tsareva EY, Kulakova OG, Boyko AN, Shchur SG, Lvovs D, Favorov AV et al. Allelic combinations of immune-response genes associated with glatiramer acetate treatment response in Russian multiple sclerosis patients. Pharmacogenomics 2012; 13: 43–53.

    Article  CAS  PubMed  Google Scholar 

  74. Jones PM, George AM . The ABC transporter structure and mechanism: perspectives on recent research. Cell Mol Life Sci 2004; 61: 682–699.

    Article  CAS  PubMed  Google Scholar 

  75. Loscher W, Potschka H . Blood-brain barrier active efflux transporters: ATP-binding cassette gene family. NeuroRx 2005; 2: 86–98.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Cotte S, von Ahsen N, Kruse N, Huber B, Winkelmann A, Zettl UK et al. ABC-transporter gene-polymorphisms are potential pharmacogenetic markers for mitoxantrone response in multiple sclerosis. Brain 2009; 132 (Pt 9): 2517–2530.

    Article  CAS  PubMed  Google Scholar 

  77. Millonig A, Hegen H, Di Pauli F, Ehling R, Gneiss C, Hoelzl M et al. Natalizumab treatment reduces endothelial activity in MS patients. J Neuroimmunol 2010; 227: 190–194.

    Article  CAS  PubMed  Google Scholar 

  78. Mellergard J, Edstrom M, Vrethem M, Ernerudh J, Dahle C . Natalizumab treatment in multiple sclerosis: marked decline of chemokines and cytokines in cerebrospinal fluid. Mult Scler 2010; 16: 208–217.

    Article  CAS  PubMed  Google Scholar 

  79. Khademi M, Bornsen L, Rafatnia F, Andersson M, Brundin L, Piehl F et al. The effects of natalizumab on inflammatory mediators in multiple sclerosis: prospects for treatment-sensitive biomarkers. Eur J Neurol 2009; 16: 528–536.

    Article  CAS  PubMed  Google Scholar 

  80. Mehling M, Lindberg R, Raulf F, Kuhle J, Hess C, Kappos L et al. Th17 central memory T cells are reduced by FTY720 in patients with multiple sclerosis. Neurology 2010; 75: 403–410.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V Foti Cuzzola.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Foti Cuzzola, V., Palella, E., Celi, D. et al. Pharmacogenomic update on multiple sclerosis: a focus on actual and new therapeutic strategies. Pharmacogenomics J 12, 453–461 (2012). https://doi.org/10.1038/tpj.2012.41

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/tpj.2012.41

Keywords

This article is cited by

Search

Quick links