Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Pharmacogenetics of nonsteroidal anti-inflammatory drugs

Abstract

With the beginning of the Human Genome Project, an emerging field of science was brought to the forefront of the pharmaceutical community. Pharmacogenetics facilitates optimization of the current patient-centered care model and pharmacotherapy as a whole. Utilizing these ever-expanding branches of science to nonsteroidal anti-inflammatory drugs (NSAIDs) can provide novel opportunities to affect patient care. With a wide range of NSAID choices available as treatment options for relieving pain and/or reducing inflammation or fever, a more systematic way of selecting the ideal agent for the patients based upon their genetic information could spare them from a potentially permanent health-care condition. Furthermore, if a patient possesses or lacks certain alleles, serious adverse events can be anticipated and avoided. The tailoring of drug therapy can be achieved using the published data and cutting-edge genetic testing to attain a higher standard of care for patients.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Palmer SN, Giesecke NM, Body SC, Shernan SK, Fox AA, Collard CD . Pharmacogenetics of anesthetic and analgesic agents. Anesthesiology 2005; 102: 663–671.

    Article  CAS  PubMed  Google Scholar 

  2. Ma Q, Lu AY . Pharmacogenetics, pharmacogenomics, and individualized medicine. Pharmacol Rev 2011; 63: 437–459.

    Article  CAS  PubMed  Google Scholar 

  3. Goodman LS, Brunton LL, Chabner B, Knollmann BC . Goodman & Gilman’s pharmacological basis of therapeutics 12th edn. McGraw-Hill: New York, 2011.

    Google Scholar 

  4. Cavallari LH, Lam YWF . Pharmacogenetics. In: DiPiro JT, Talbert RL, Yee GC, Matzke GR, Wells BG, Posey LM. Pharmacotherapy A Pathophysiologic Approach 7th edn McGraw-Hill Medical: New York, 2008: pp 31–47.

    Google Scholar 

  5. Sachidanandam R, Weissman D, Schmidt SC, Kakol JM, Stein LD, Marth G et al. A map of human genome sequence variation containing 1.42 million single nucleotide polymorphisms. Nature 2001; 409: 928–933.

    Article  CAS  PubMed  Google Scholar 

  6. Harirforoosh S, Fleckenstein L, Mahajan P, Aruoma OI, Huang Y, Moridani M . The importance of including topics related to pharmacogenetics, pharmacogenomics, and medical genetics in the pharmacy curriculum. Am J Pharm Educ 2009; 73: 114.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Warner TD, Giuliano F, Vojnovic I, Bukasa A, Mitchell JA, Vane JR . Nonsteroid drug selectivities for cyclo-oxygenase-1 rather than cyclo-oxygenase-2 are associated with human gastrointestinal toxicity: a full in vitro analysis. Proc Natl Acad Sci USA 1999; 96: 7563–7568.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Bleumink GS, Feenstra J, Sturkenboom MC, Stricker BH . Nonsteroidal anti-inflammatory drugs and heart failure. Drugs 2003; 63: 525–534.

    Article  CAS  PubMed  Google Scholar 

  9. Fritsche E, Baek SJ, King LM, Zeldin DC, Eling TE, Bell DA . Functional characterization of cyclooxygenase-2 polymorphisms. J Pharmacol Exp Ther 2001; 299: 468–476.

    CAS  PubMed  Google Scholar 

  10. Yun HR, Lee SO, Choi EJ, Shin HD, Jun JB, Bae SC . Cyclooxygenase-2 polymorphisms and risk of rheumatoid arthritis in Koreans. J Rheumatol 2008; 35: 763–769.

    CAS  PubMed  Google Scholar 

  11. Catella-Lawson F, McAdam B, Morrison BW, Kapoor S, Kujubu D, Antes L et al. Effects of specific inhibition of cyclooxygenase-2 on sodium balance, hemodynamics, and vasoactive eicosanoids. J Pharmacol Exp Ther 1999; 289: 735–741.

    CAS  PubMed  Google Scholar 

  12. Harirforoosh S, Jamali F . Renal adverse effects of nonsteroidal anti-inflammatory drugs. Expert Opin Drug Saf 2009; 8: 669–681.

    Article  CAS  PubMed  Google Scholar 

  13. Whelton A, Hamilton CW . Nonsteroidal anti-inflammatory drugs: effects on kidney function. J Clin Pharmacol 1991; 31: 588–598.

    Article  CAS  PubMed  Google Scholar 

  14. Breyer MD, Harris RC . Cyclooxygenase 2 and the kidney. Curr Opin Nephrol Hypertens 2001; 10: 89–98.

    Article  CAS  PubMed  Google Scholar 

  15. Stamer UM, Stuber F . The pharmacogenetics of analgesia. Expert Opin Pharmacother 2007; 8: 2235–2245.

    Article  CAS  PubMed  Google Scholar 

  16. Aithal GP, Day CP, Leathart JB, Daly AK . Relationship of polymorphism in CYP2C9 to genetic susceptibility to diclofenac-induced hepatitis. Pharmacogenetics 2000; 10: 511–518.

    Article  CAS  PubMed  Google Scholar 

  17. Yasar U, Eliasson E, Forslund-Bergengren C, Tybring G, Gadd M, Sjoqvist F et al. The role of CYP2C9 genotype in the metabolism of diclofenac in vivo and in vitro. Eur J Clin Pharmacol 2001; 57: 729–735.

    Article  CAS  PubMed  Google Scholar 

  18. Tracy TS, Hutzler JM, Haining RL, Rettie AE, Hummel MA, Dickmann LJ . Polymorphic variants (CYP2C9*3 and CYP2C9*5) and the F114L active site mutation of CYP2C9: effect on atypical kinetic metabolism profiles. Drug Metab Dispos 2002; 30: 385–390.

    Article  CAS  PubMed  Google Scholar 

  19. Agundez JA, Garcia-Martin E, Martinez C . Genetically based impairment in CYP2C8- and CYP2C9-dependent NSAID metabolism as a risk factor for gastrointestinal bleeding: is a combination of pharmacogenomics and metabolomics required to improve personalized medicine? Expert Opin Drug Metab Toxicol 2009; 5: 607–620.

    Article  CAS  PubMed  Google Scholar 

  20. Lee CR, Goldstein JA, Pieper JA . Cytochrome P450 2C9 polymorphisms: a comprehensive review of the in-vitro and human data. Pharmacogenetics 2002; 12: 251–263.

    Article  CAS  PubMed  Google Scholar 

  21. Liao JK . Safety and efficacy of statins in Asians. Am J Cardiol 2007; 99: 410–414.

    Article  CAS  PubMed  Google Scholar 

  22. American Society of Hospital Pharmacists. AHFS Drug Information. Published by authority of the Board of Directors of the American Society of Health-System Pharmacists: Bethesda, MD, 2009.

  23. He SM, Zhou ZW, Li XT, Zhou SF . Clinical drugs undergoing polymorphic metabolism by human cytochrome P450 2C9 and the implication in drug development. Curr Med Chem 2011; 18: 667–713.

    Article  CAS  PubMed  Google Scholar 

  24. Werner U, Werner D, Rau T, Fromm MF, Hinz B, Brune K . Celecoxib inhibits metabolism of cytochrome P450 2D6 substrate metoprolol in humans. Clin Pharmacol Ther 2003; 74: 130–137.

    Article  CAS  PubMed  Google Scholar 

  25. Zhou SF, Zhou ZW, Yang LP, Cai JP . Substrates, inducers, inhibitors and structure-activity relationships of human Cytochrome P450 2C9 and implications in drug development. Curr Med Chem 2009; 16: 3480–3675.

    Article  CAS  PubMed  Google Scholar 

  26. Sandberg M, Yasar U, Stromberg P, Hoog JO, Eliasson E . Oxidation of celecoxib by polymorphic cytochrome P450 2C9 and alcohol dehydrogenase. Br J Clin Pharmacol 2002; 54: 423–429.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Tang C, Shou M, Rushmore TH, Mei Q, Sandhu P, Woolf EJ et al. In-vitro metabolism of celecoxib, a cyclooxygenase-2 inhibitor, by allelic variant forms of human liver microsomal cytochrome P450 2C9: correlation with CYP2C9 genotype and in-vivo pharmacokinetics. Pharmacogenetics 2001; 11: 223–235.

    Article  CAS  PubMed  Google Scholar 

  28. Brenner SS, Herrlinger C, Dilger K, Murdter TE, Hofmann U, Marx C et al. Influence of age and cytochrome P450 2C9 genotype on the steady-state disposition of diclofenac and celecoxib. Clin Pharmacokinet 2003; 42: 283–292.

    Article  CAS  PubMed  Google Scholar 

  29. Kirchheiner J, Stormer E, Meisel C, Steinbach N, Roots I, Brockmoller J . Influence of CYP2C9 genetic polymorphisms on pharmacokinetics of celecoxib and its metabolites. Pharmacogenetics 2003; 13: 473–480.

    Article  CAS  PubMed  Google Scholar 

  30. Chan AT, Zauber AG, Hsu M, Breazna A, Hunter DJ, Rosenstein RB et al. Cytochrome P450 2C9 variants influence response to celecoxib for prevention of colorectal adenoma. Gastroenterology 2009; 136: 2127–2136 e2121.

    Article  CAS  PubMed  Google Scholar 

  31. Skarke C, Reus M, Schmidt R, Grundei I, Schuss P, Geisslinger G et al. The cyclooxygenase 2 genetic variant −765G>C does not modulate the effects of celecoxib on prostaglandin E2 production. Clin Pharmacol Ther 2006; 80: 621–632.

    Article  CAS  PubMed  Google Scholar 

  32. Singer JB, Lewitzky S, Leroy E, Yang F, Zhao X, Klickstein L et al. A genome-wide study identifies HLA alleles associated with lumiracoxib-related liver injury. Nat Genet 2010; 42: 711–714.

    Article  CAS  PubMed  Google Scholar 

  33. Farkouh ME, Kirshner H, Harrington RA, Ruland S, Verheugt FW, Schnitzer TJ et al. Comparison of lumiracoxib with naproxen and ibuprofen in the Therapeutic Arthritis Research and Gastrointestinal Event Trial (TARGET), cardiovascular outcomes: randomised controlled trial. Lancet 2004; 364: 675–684.

    Article  CAS  PubMed  Google Scholar 

  34. Schnitzer TJ, Burmester GR, Mysler E, Hochberg MC, Doherty M, Ehrsam E et al. Comparison of lumiracoxib with naproxen and ibuprofen in the Therapeutic Arthritis Research and Gastrointestinal Event Trial (TARGET), reduction in ulcer complications: randomised controlled trial. Lancet 2004; 364: 665–674.

    Article  CAS  PubMed  Google Scholar 

  35. Furst DE, Ulrich RW . Nonsteroidal Anti-inflammatory Drugs, Disease-Modifying Antirheumatic Drugs, Nonopiod Analgesics, & Drugs Used in Gout. In: Katzung BG. Basic and Clinical Pharmacology 10th edn. McGraw-Hill Medical: New York, 2007: pp 573–598.

    Google Scholar 

  36. Lepantalo A, Mikkelsson J, Resendiz JC, Viiri L, Backman JT, Kankuri E et al. Polymorphisms of COX-1 and GPVI associate with the antiplatelet effect of aspirin in coronary artery disease patients. Thromb Haemost 2006; 95: 253–259.

    Article  CAS  PubMed  Google Scholar 

  37. Patrono C . Aspirin as an antiplatelet drug. N Engl J Med 1994; 330: 1287–1294.

    Article  CAS  PubMed  Google Scholar 

  38. Chen Y, Kuehl GE, Bigler J, Rimorin CF, Schwarz Y, Shen DD et al. UGT1A6 polymorphism and salicylic acid glucuronidation following aspirin. Pharmacogenet Genomics 2007; 17: 571–579.

    Article  CAS  PubMed  Google Scholar 

  39. Nakajima M, Inoue T, Shimada N, Tokudome S, Yamamoto T, Kuroiwa Y . Cytochrome P450 2C9 catalyzes indomethacin O-demethylation in human liver microsomes. Drug Metab Dispos 1998; 26: 261–266.

    CAS  PubMed  Google Scholar 

  40. Rodrigues AD . Impact of CYP2C9 genotype on pharmacokinetics: are all cyclooxygenase inhibitors the same? Drug Metab Dispos 2005; 33: 1567–1575.

    Article  CAS  PubMed  Google Scholar 

  41. Wynne HA, Long A, Nicholson E, Ward A, Keir D . Are altered pharmacokinetics of non-steroidal anti-inflammatory drugs (NSAIDs) a risk factor for gastrointestinal bleeding? Br J Clin Pharmacol 1998; 45: 405–408.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Martin JH, Begg EJ, Kennedy MA, Roberts R, Barclay ML . Is cytochrome P450 2C9 genotype associated with NSAID gastric ulceration? Br J Clin Pharmacol 2001; 51: 627–630.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Kumar A, Mann HJ, Remmel RP . Simultaneous analysis of cytochrome P450 probes-dextromethorphan, flurbiprofen and midazolam and their major metabolites by HPLC-mass-spectrometry/fluorescence after single-step extraction from plasma. J Chromatogr B Analyt Technol Biomed Life Sci 2007; 853: 287–293.

    Article  CAS  PubMed  Google Scholar 

  44. Lee CR, Pieper JA, Frye RF, Hinderliter AL, Blaisdell JA, Goldstein JA . Differences in flurbiprofen pharmacokinetics between CYP2C9*1/*1, *1/*2, and *1/*3 genotypes. Eur J Clin Pharmacol 2003; 58: 791–794.

    Article  CAS  PubMed  Google Scholar 

  45. Qayyum A, Najmi MH, Farooqi ZU . Determination of pharmacokinetics of flurbiprofen in Pakistani population using modified HPLC method. J Chromatogr Sci 2011; 49: 108–113.

    Article  CAS  PubMed  Google Scholar 

  46. Davies NM . Clinical pharmacokinetics of ibuprofen. The first 30 years. Clin Pharmacokinet 1998; 34: 101–154.

    Article  CAS  PubMed  Google Scholar 

  47. Geisslinger G, Stock KP, Loew D, Bach GL, Brune K . Variability in the stereoselective disposition of ibuprofen in patients with rheumatoid arthritis. Br J Clin Pharmacol 1993; 35: 603–607.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Leemann TD, Transon C, Bonnabry P, Dayer P . A major role for cytochrome P450TB (CYP2C subfamily) in the actions of non-steroidal antiinflammatory drugs. Drugs Exp Clin Res 1993; 19: 189–195.

    CAS  PubMed  Google Scholar 

  49. Hamman MA, Thompson GA, Hall SD . Regioselective and stereoselective metabolism of ibuprofen by human cytochrome P450 2C. Biochem Pharmacol 1997; 54: 33–41.

    Article  CAS  PubMed  Google Scholar 

  50. Kirchheiner J, Meineke I, Freytag G, Meisel C, Roots I, Brockmoller J . Enantiospecific effects of cytochrome P450 2C9 amino acid variants on ibuprofen pharmacokinetics and on the inhibition of cyclooxygenases 1 and 2. Clin Pharmacol Ther 2002; 72: 62–75.

    Article  CAS  PubMed  Google Scholar 

  51. Crespi CL, Miller VP . The R144C change in the CYP2C9*2 allele alters interaction of the cytochrome P450 with NADPH:cytochrome P450 oxidoreductase. Pharmacogenetics 1997; 7: 203–210.

    Article  CAS  PubMed  Google Scholar 

  52. Kidd RS, Straughn AB, Meyer MC, Blaisdell J, Goldstein JA, Dalton JT . Pharmacokinetics of chlorpheniramine, phenytoin, glipizide and nifedipine in an individual homozygous for the CYP2C9*3 allele. Pharmacogenetics 1999; 9: 71–80.

    Article  CAS  PubMed  Google Scholar 

  53. Sullivan-Klose TH, Ghanayem BI, Bell DA, Zhang ZY, Kaminsky LS, Shenfield GM et al. The role of the CYP2C9-Leu359 allelic variant in the tolbutamide polymorphism. Pharmacogenetics 1996; 6: 341–349.

    Article  CAS  PubMed  Google Scholar 

  54. Steward DJ, Haining RL, Henne KR, Davis G, Rushmore TH, Trager WF et al. Genetic association between sensitivity to warfarin and expression of CYP2C9*3. Pharmacogenetics 1997; 7: 361–367.

    Article  CAS  PubMed  Google Scholar 

  55. Garcia-Martin E, Martinez C, Tabares B, Frias J, Agundez JA . Interindividual variability in ibuprofen pharmacokinetics is related to interaction of cytochrome P450 2C8 and 2C9 amino acid polymorphisms. Clin Pharmacol Ther 2004; 76: 119–127.

    Article  CAS  PubMed  Google Scholar 

  56. Kirchheiner J, Brockmoller J . Clinical consequences of cytochrome P450 2C9 polymorphisms. Clin Pharmacol Ther 2005; 77: 1–16.

    Article  CAS  PubMed  Google Scholar 

  57. Carbonell N, Verstuyft C, Massard J, Letierce A, Cellier C, Deforges L et al. CYP2C9*3 loss-of-function allele is associated with acute upper gastrointestinal bleeding related to the use of NSAIDs other than aspirin. Clin Pharmacol Ther 2010; 87: 693–698.

    Article  CAS  PubMed  Google Scholar 

  58. Vianna-Jorge R, Perini JA, Rondinelli E, Suarez-Kurtz G . CYP2C9 genotypes and the pharmacokinetics of tenoxicam in Brazilians. Clin Pharmacol Ther 2004; 76: 18–26.

    Article  CAS  PubMed  Google Scholar 

  59. Takanashi K, Tainaka H, Kobayashi K, Yasumori T, Hosakawa M, Chiba K . CYP2C9 Ile359 and Leu359 variants: enzyme kinetic study with seven substrates. Pharmacogenetics 2000; 10: 95–104.

    Article  CAS  PubMed  Google Scholar 

  60. Peiro AM, Novalbos J, Zapater P, Moreu R, Lopez-Rodriguez R, Rodriguez V et al. Pharmacogenetic relevance of the CYP2C9*3 allele in a tenoxicam bioequivalence study performed on Spaniards. Pharmacol Res 2009; 59: 62–68.

    Article  CAS  PubMed  Google Scholar 

  61. Daly AK, Aithal GP, Leathart JB, Swainsbury RA, Dang TS, Day CP . Genetic susceptibility to diclofenac-induced hepatotoxicity: contribution of UGT2B7, CYP2C8, and ABCC2 genotypes. Gastroenterology 2007; 132: 272–281.

    Article  CAS  PubMed  Google Scholar 

  62. Blanco G, Martinez C, Ladero JM, Garcia-Martin E, Taxonera C, Gamito FG et al. Interaction of CYP2C8 and CYP2C9 genotypes modifies the risk for nonsteroidal anti-inflammatory drugs-related acute gastrointestinal bleeding. Pharmacogenet Genomics 2008; 18: 37–43.

    Article  CAS  PubMed  Google Scholar 

  63. Lee YS, Kim H, Wu TX, Wang XM, Dionne RA . Genetically mediated interindividual variation in analgesic responses to cyclooxygenase inhibitory drugs. Clin Pharmacol Ther 2006; 79: 407–418.

    Article  CAS  PubMed  Google Scholar 

  64. Stamer UM, Zhang L, Stuber F . Personalized therapy in pain management: where do we stand? Pharmacogenomics 2010; 11: 843–864.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S Harirforoosh.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wyatt, J., Pettit, W. & Harirforoosh, S. Pharmacogenetics of nonsteroidal anti-inflammatory drugs. Pharmacogenomics J 12, 462–467 (2012). https://doi.org/10.1038/tpj.2012.40

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/tpj.2012.40

Keywords

This article is cited by

Search

Quick links