Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Arctic lakes show strong decadal trend in earlier spring ice-out


The timing of the seasonal freeze-thaw cycle of arctic lakes affects ecological processes and land-atmosphere energy fluxes. We carried out detailed ice-phenology mapping of arctic lakes, based on daily surface-reflectance time series for 2000–2013 from MODIS at 250 m spatial resolution. We used over 13,300 lakes, area >1 km2, in five study areas distributed evenly across the circumpolar Arctic — the first such phenological dataset. All areas showed significant trends towards an earlier break-up, stronger than previously reported. The mean shift in break-up start ranged from −0.10 days/year (Northern Europe) to −1.05 days/year (central Siberia); the shift in break-up end was between −0.14 and −0.72 days/year. Finally, we explored the effect of temperature on break-up timing and compared results among study areas. The 0 °C isotherm shows the strongest relationship (r = 0.56–0.81) in all study areas. If the trend in early break-up continues, rapidly changing ice phenology will likely generate significant, arctic-wide impacts.


As a major landscape component of the Arctic, lakes play an important role in land-surface dynamics and have been shown to be sensitive indicators of climate change1,2. Many processes occurring in and around arctic lakes are influenced by the phenology of lake ice (i.e., timing of the seasonal freeze-thaw cycle). Together with the thickness of ice cover, phenology affects water temperature, thermal stratification, light penetration, nutrient supply and phytoplankton dynamics3. Changes in air temperature can explain up to 70% of the variance in freeze-up and break-up dates1,4,5,6, and thus ice phenology should reflect both inter-annual trends and short-term variability in regional climate7.

It is now established that the rate of warming at high latitudes is at least twice the global average8,9,10. Due to the importance of ice cover to lake ecosystems and biogeochemistry, climate feedback, and the surface energy balance, there been numerous attempts to record (or quantify) recent spatial and temporal trends in lake ice phenology in the Northern Hemispere11,12,13,14. However, the majority of earlier studies have been limited to individual large or otherwise important lakes with long series of in-situ observations. Only a few of these are located north of the 65°N, and they cannot be considered representative of the Arctic. Challenges to synthesis of data include non-standard protocols and terminology, absence of qualifying metadata for historical observations, varying and intermittent period of record, a lack of detailed spatial representation of arctic lakes, and changes in observation methods15,16. In addition, for the many lakes in remote arctic regions in-situ observations are particularly sparse, and this limits our ability to quantify the impact of warming climate on lake ice at larger spatial scales.

Air temperature, precipitation, wind conditions, location (latitude, surrounding landscape characteristics), elevation, and morphological variables such as lake size and depth are important variables governing the formation and decay of lake ice17,18. Ice formation is initiated at the moment when the heat loss at the surface of the lake exceeds the heat gained from solar radiation and convection in the lake. Lake volume determines the heat storage capacity and thus the timing of the freeze onset. Large and deep lakes generally remain ice-free longer than smaller or shallower lakes at the same latitude and altitude. The decay of ice is less dependent on the lake’s morphological parameters and is determined rather by temperature patterns and local weather conditions, as well as the volume of inflow into the lake18. The extent to which each of these variables determines ice phenology, and whether their influence differs geographically, has not been explored in depth at the Pan-Arctic scale, but it can be expected to contribute noise around phenological trends. Thus, large datasets are best suited to the detection of regional changes.

To date, records of ice phenology have differed in length and are relatively few, hampering detection of persistent, regional-scale trends, if they exist. In this study, we examined over 13,300 lakes over a 14-year period, a robust dataset that illustrates remarkably fast changes in arctic-wide ice phenology. This study is the first attempt to provide a detailed spatial analysis of changes in lake-ice break-up for multiple arctic regions at an inter-annual scale. In contrast to earlier studies, the current analysis considered all lakes with a surface area greater or equal to 1 km2 in five sampling regions across the Arctic (Fig. 1). It utilized the high spatial and temporal resolution of freely available remote sensing data. We developed a method to estimate break-up dates using time series of surface reflectance data from the Moderate Resolution Imaging Spectroradiometer (MODIS) satellite sensor and to generate a standardised estimate for over 13,300 lakes. Four key variables were extracted for each lake: 1) the date when ice is first detected, referred to as freeze-up start (FUS); 2) the date when there is no longer any detectable open water on the lake, referred to as freeze-up end (FUE); 3) the date when the first ice-free water appears, referred to as break-up start (BUS); 4) the date when the lake is completely free of ice, referred to as break-up end (BUE). However, only BUS and BUE have been analysed further due to unreliability of extracted FUS and FUE dates (see below).

Figure 1

Location of study areas with average trends and dispersion of ice phenology.

Break-up start (BUS, top panel/orange) and break-up end (BUE, bottom panel/pink) values are averaged for the study areas. This figure was drawn using MS Excel 2010 ( and ESRI ArcMap 10.3 (

Finally, the relationship between air temperature and lake-ice break-up timing was explored via a series of regional comparisons of break-up dates and air temperature-derived variables suggested in literature e.g., the annual amplitude, the date of the 0 °C isotherm6,19, fixed 30-day means5. While the variables governing the timing of freeze and break-up events are well defined in previous studies, our objective was to explore whether the relationships with temperature differ between study areas.


In situ observation data for 25 lakes (obtained from the Finish Environmental institute [SYKE] and the Swedish Hydrological and Meteorological Institute [SHMI]) were used to validate the satellite-derived phenological dates. There was strong agreement between in situ data and satellite estimates of BUE (R2 = 0.65, RMSE = 6.16 days, MBE = −1.38 days, n = 287). Freeze-up dates (FUE) were also estimated, but the low sun angle during the freeze-up period affected the ability of the satellite sensor to collect adequate data. This resulted in less reliable estimates of freeze-up dates and their exclusion from further analysis (R2 = 0.32, RMSE = 32.8 days, MBE = 16.2 days, n = 274). The earliest BUS occurred at the end of March in the southern part of the northern European study area, and the latest was in mid-June in the northern portion of the northeast Canadian study area (Fig. 1). BUE followed a similar spatial pattern three to four weeks after BUS.

Statistical analysis of the 14-year mean BUS and BUE time series showed a temporal progression to an earlier start of these events across all five sampling areas (Fig. 1). Greater variation in BUE compared to BUS is evident in the Alaskan, northeast Canadian, and central Siberian study areas (as indicated by the error bounds in Fig. 1). The central Siberian area had the strongest rate of change for BUS and BUE (slope −1.05 days/year and −0. 72 days/year respectively), whereas the northern European area had the weakest rate of change for BUS and BUE (slope −0.10 days/year and −0.14 days/year respectively). Except in the northern European study area (51% BUS, 54% BUE), the great majority (76–97% BUS, 69–95% BUE) of lakes showed a negative trend (i.e. earlier dates; Table 1). Since the statistical significance level of individual lake trends varied within study areas, presumably due to variation among lakes in such factors as water volume (see above), the overall trends and significant negative trend (p < 0.05) are discussed separately.

Table 1 Summary of observed changes.

With the exception of the central Siberian study area, a relatively small proportion of lakes in each area showed a significant trend for the break-up period (e.g., central Siberia BUS, 33%; northeast Siberia BUS, 5%; see Table 1). Whether a trend was recognized as significant or not was strongly dependent on the completeness and length of underlying time series. For over 97% of the lakes, full 14-year BUS and BUE time series were extracted (see Methods). However, the length of record is relatively short, and this largely explains the high number of non-significant trends. In all but the Alaskan and Central Siberian study areas, more lakes showed a significant trend for BUE than for BUS (Table 1). The great majority of identified trends, whether significant or not, are negative, indicating a general pattern of earlier break-up of lake-ice. The number of positive trends (i.e. a later ice-out) corresponds to <0.1% of significant trends for all study areas except Northern Europe, which shows 17% and 29% positive trends for BUS and BUE, respectively, although absolute numbers are low (Table 1). Below, we discuss rates and spatial patterns of change by study area.

Northern European study area

The trend signal is mixed for the Northern Europe study area (Fig. 2). The average overall rate of change observed for all 1,802 lakes included in the study was −0.10 and −0.14 days/year with only very few lakes (BUS 14, BUE 18) showing a significant trend. Lakes with significant negative trends (<1% of lakes) were located predominantly on the northern Kola Peninsula; here, BUS and BUE changed by on average −0.98 days and −0.89 days per year, respectively (Table 1).

Figure 2

The spatial distribution and magnitude of all significant trends of breakup start and end for all study areas.

Each dot represents a lake for which statistically significant trend was observed. The colour value represents the magnitude of the trend. This figure was drawn using ESRI ArcMap 10.3 (

Northeast Canada study area

The overall observed rate of change for 2,994 lakes in Northeast Canada study area was stronger with mean change of −0.31 and −0.34 days per year for BUS and BUE, respectively, than observed in Northern Europe (Table 1). Significant negative trends similar in magnitude to the North European study area were observed for lakes in the glaciated terrain of the Precambrian shield of northeast Canada (Fig. 2). Lakes with significant negative trends (<3% of lakes) show a shift towards an earlier BUS, with a mean rate of −0.93 days/year. The magnitude of change in BUE was even higher with an average change of −1.05 days/year (Table 1, Fig. 2).

Alaskan Arctic Coastal Plain study area

The 1,303 studied lakes on the Alaskan Arctic Coastal Plain show a stronger response then observed in Northeast Canada and Northern Europe, with the shift towards earlier BUS showing a mean rate of −0.60 days/year. The BUE was on average −0.34 days/year earlier (Fig. 2). Over 18% of the lakes show a significant negative trend for BUS with a mean rate −0.94 days/year; ~9% show a mean rate of −0.89 days/year for BUE (Table 1).

Central Siberia study area

The most pronounced change in spring break-up was observed in the central Siberia study area (Fig. 2). The mean observed rate of change for 1234 studied lakes was −1.05 days/year for BUS and −0.72 days/year for BUE. Over 33% of lakes, a much higher portion than in any other study area, showed significant negative trend for BUS with mean rate of −1.40 days/year. Eleven percent showed a significant negative trend for BUE with mean rate of −1.10 days/year (Table 1).

Northeast Siberia study area

For 6,028 studied lakes in Northeast Siberia, the largest study area, the mean observed change for BUS and BUE was −0.34 and −0.37 days/year, respectively. Many lakes (BUS 5%, BUE 8%) show significant negative trends (Fig. 2), with BUS occurring on average −0.86 days/year earlier and BUE −0.95 days/year earlier. A few significant positive trends were observed, distributed randomly, which could indicate error in the extraction process but may alternatively reflect individualistic lake behaviour, as this area has by far the highest lake density and hence number of lakes observed. If extreme and positive values are disregarded, a weak southeast to northwest gradient in the magnitude of the change can be detected, with greatest change in the northwest.

Temperature as a controlling factor for lake ice phenology

We examined a range of temperature variables derived from the ERA-Interim Reanalysis 2-m air temperature dataset at a 0.7-degree spatial resolution20. Of these, the date of the 0 °C isotherm is most strongly related to BUS and BUE. For BUS the strongest relationship was found in the northeast Siberia study area (r = 0.81, p < 0.001) and the weakest for the northern European area (r = 0.63, p < 0.001; Fig. 3). The relationships are slightly weaker for BUE (r = 0.56–0.76, p < 0.001), as the end of break-up is expected to be affected by factors other than temperature alone, such as wind speed, snow cover and rainfall. These factors were excluded from further analyses due to coarse spatial resolution of the available climate data, which required downscaling of BUS/BUE for further analysis and generated noise in the regressions. Further analysis of the temperature-related variables is provided in the supplementary information.

Figure 3

The relationship of BUS timing with the timing of the 0 °C isotherm for all study areas (axes in Julian days).

Due to the spatial resolution of gridded temperature data, many lakes correspond to one grid cell. To overcome this, only the median BUS and BUE values within the grid cell were related to temperature variables. This is particularly visible for the smallest study area, Alaska, which is covered by only a few grid cells and has a low dispersion of BUS and BUE dates. This figure was drawn using MS Excel 2010 (


While cloud cover and low illumination in winter constrain the use of optical data in the polar regions during the freeze-up period, our satellite-based method of estimating the timing of BUS and BUE provides data in good agreement with in situ observations during spring break-up. Overall, the results indicate a marked shortening of the spring ice-on period around the Arctic since the beginning of the new millennium (Table 1). While due to reasons highlighted above, our method is not applicable to autumn freeze-up, in situ observations suggest a parallel lengthening of the autumn ice-free season and shortening of the overall ice-on period12.

For Northern Europe, most lakes showing significant trends were located in northern Kola Peninsula. Lakes in other parts of the study area do not show any significant trend in BUS and BUE, which agrees with previous studies conducted for individual Northern European lakes12,21,22,23. This pattern is explained by regional temperature trends: unlike most of the Arctic, northwest Europe experienced stagnation in the mean annual temperature trend and even slight cooling trend in the first quartile (January-April) during the study period, except for the northern coast of Kola Peninsula, where slight warming occurred (NASA - GISS Surface Temperature Analysis).

For Northeast Canada, our results also concur with an earlier study in which the ice phenologies of six large Canadian high-latitude lakes were analysed using AVHRR surface reflectance data and which reports a mean BUE trend of −0.99 days/year over the period 1985–200424.

Surdu et al.25 examined lakes in the northern part of Alaskan Arctic Coastal Plain and identified an overall negative shift in BUE date by 17.7–18.6 days over the study period 1950–2011, corresponding to −0.29 to −0.3 days/year, a rate much slower than that observed here25. The period 1950–1976 was considerably cooler than the period 1977–2011, and this variation in long-term temperature patterns likely masked recent rapid change26. In the period used in the current study, the Alaskan Arctic Coastal Plain has shown a further increase in temperatures compared with 1977–2000; the mean annual temperature increased up to +1.0 °C over the period 2000–2014 (NASA - GISS Surface Temperature Analysis, IPCC).

No published data are available for comparison for central and northeast Siberia. However, recent decadal temperature trends show a +0.5 to +2 °C increase in mean annual temperature in northern Siberia between 2000 and 2014 (more than in other study areas). This can explain the stronger response of Siberian lakes as compared to other study areas (NASA - GISS Surface Temperature Analysis, IPCC).

Identified significant break-up trends are stronger than those reported previously in literature. This is partly attributable to our use of a relatively short (14 years) and recent time period, but lake size may also be a factor, as it would be expected that small lakes (<2.5 km2), which are well represented in our high-resolution dataset, would be more responsive to an increase in air temperature than large lakes with greater heat storage capacity. This assumption is further supported by observation made by Arp et al.27 that bedfast ice, which is more likely to occur on small shallow lakes, leads to significantly earlier ice-out date than floating ice27.

The strong explanatory power of the 0 °C isotherm timing (up to 81%) agrees well with results reported in literature (North American lakes27,28,29,30). Moreover, the relationship changes only marginally among the study areas, and therefore the date of the 0 °C isotherm may usefully serve as a proxy for the timing of BUS and BUE around the circumpolar Arctic. The likely reason for the strong relationship of break-up and 0 °C isotherm is its ability to capture the variation across the extensive study areas used here, in contrast to 30-day means, which only capture local conditions.

If the trend in earlier ice-out continues, a range of implications are likely. For example, due to the large areas they occupy, lakes play an important role in shaping the local and regional climate via surface energy balance. Moreover, changes in lake-ice phenology, such as an increase in the length of the open-water season, will affect water temperatures and, in turn, within-lake biogeochemical cycles. For example, lakes that have not previously warmed above 4 °C may be driven from monomixis (one regular period of mixing, in summer) to dimixis (two mixing periods, in spring and fall), or an open-water season may be introduced to previously perennially frozen lakes31,32,33. Such changes would affect fundamental habitat conditions within the lake, including nutrient regimes, water column oxygenation and light availability32,33. These effects are expected to be more pronounced in small, shallow lakes with lower capacity for heat retention. Thus shifts toward shorter ice-cover duration should cause increases in primary productivity and, consequently, changes in trophic relationships within a lake3,32,33,34.

Potential direct feedbacks to climate concern the contribution to the hemispheric greenhouse gas budget. Arctic lakes in particular have been observed to be both source of and sink for carbon dioxide (CO2)35. They are also a source of methane (CH4), which is formed within lakes and their sediments and also via microbial processing of thawed permafrost substrates underneath thermokarst lakes31,36. Gas fluxes are likely to be climate-sensitive: for example, warming would likely enhance metabolic activity and drive higher fluxes37.

The observed changes in lake-ice phenology reflect the magnitude of climate change occurring in the Arctic. The trend towards earlier break-up (both BUS and BUE) in all areas is stronger than any previously identified and in some study areas exceeds one day per year. Linear extrapolation of such rates over the next several decades would bring spring break-up earlier by a whole month. Beyond potential effects on local/regional climate and lacustrine ecosystem processes, this will affect infrastructural features, such as the widespread use of lake ice for commercial and recreational winter transport routes and subsistence32. The data contribute to a growing range of observations that show the influence of recent warming on the arctic cryosphere38.


To derive the phenological dates for the five sample areas in the Arctic an adapted temporal profile method24 was used. The use of surface reflectance profiles greatly reduces the volume of data necessary for processing. Fourteen years of time series of average daily near-infrared (NIR) surface reflectance for each lake were derived from the MODIS 250 m surface reflectance product (MOD09GQ, collection 5).

To identify the spatial distribution of lakes and find MODIS pixels corresponding to a lake, two data sets were used. The GLWD39 is widely used for regional and global studies but the majority of smaller (<10 km2) lakes are omitted or their area is underestimated. Recently a new and more accurate database (NALGDB) became available for the Arctic40. The NALGDB is based on Landsat imagery and covers the area north of 65° latitude. With an overall accuracy of 78% and 30-m resolution, it is the most complete and accurate database available for Arctic lakes. However, while small lakes are (fairly) accurately mapped, some large lakes were excluded from the version we used. Therefore, both databases were combined to provide a comprehensive dataset across lake sizes greater than 1 km2. Minimum lake area was set to 1 km2 in order to ensure that at least one pure lake pixel could be obtained from the MODIS data.

The NIR surface reflectance profiles (Band 2 of MOD09GQ) were extracted for all MODIS pixels within a lake boundary. Although low quality pixels were masked prior to extraction using the MODIS Quality Assurance (QA) flag41, residual extreme values caused by atmospheric conditions (cloud, haze) may still have been included, thus affecting the final mean lake reflectance profile. A method to detect and remove outliers was implemented, which used the mean absolute deviation from the median in a moving temporal window (for details see supplementary material).

Following outlier removal, mixed land/coastal pixels falling within the boundary of a specific lake were removed from the set of lake pixels. To identify mixed land water pixels subset of 1000 pure-lake reference pixels was selected from the data. Mean summer (July and August) reflectance in every year was calculated for all pixels in the subset. The 3rd quartile (390.4) of all the means was set as the open-water reflectance threshold in case residual ice was present in some reference pixels. The July-August pixel mean reflectance was then calculated for all temporal profiles of all lakes in the study for the first 5 years (2000–2004). If the means were higher than the reference threshold for more than 2 out of 5 years, the pixel was considered mixed and the profile was discarded. Due to the rugged shorelines of Arctic lakes, almost 75% of profiles were removed for some of the lakes. For approximately 40% of the original 23,234 lakes across the study areas, all the profiles were removed, meaning those lakes did not contain any pure lake pixels and were excluded from further analysis (e.g., small lakes or lakes with very rugged boundaries and/or islands). Finally, the pixel temporal profiles were averaged for each lake to give the final lake NIR surface reflectance profiles.

The extraction of FUS, FUE, BUS and BUE dates from the mean profiles was performed using TIMESAT software42. Features in the lower portion of the reflectance profile (i.e. FUS, BUE) are likely to be affected by erroneous bright values (cloud, haze, etc.)24. To overcome this, these variables were derived from an adapted curve that was fitted to the lower envelope of the surface reflectance time series (see supplementary material). On the other hand, high reflectance values (i.e. FUE, BUS), are more susceptible to dark artefacts (e.g., shadow). Therefore, these were derived from a curve fitted to the upper envelope of the time series. Due to low sun illumination, freeze-up events (FUS and FUE) do not appear as distinct features in majority of profiles, and cannot therefore be extracted with confidence (see Supplementary Material).

Finally, the extracted BUE dates were validated using in situ observations for 25 lakes in Northern Europe (288 observations). Agreement between in situ observations and estimates was measured using simple correlation, coefficient of determination (R2), mean absolute error (MAE) and root mean square error (RMSE).

To analyze a time series for a trend, the Theil-Sen slope approach was used43. The significance of trends was assessed using the rank-based, non-parametric Mann Kendall test. To correct for serial correlation, the approach proposed by Zhang et al. was used44. The trend analysis was performed using the ‘zyp’ (Zhang + Yue-Pilon trends) package in R45. For the calculation of the mean trend magnitude in each area, 2% of lowest and highest values have been removed to avoid skewness due to outliers.

Finally, to explore the strength and significance of the relationship between annual temperature amplitude, the date of the 0 °C isotherm, 30-day daily air temperature means and the timing of the break-up events the BUS and BUE dates were estimated using Pearson product-moment correlation r. The date of 0 °C isotherm was defined as the date when the daily air temperature profile, smoothed in a 31-day window, crosses the 0 °C value. The fixed-period means were calculated within a running window of 30 days, with a 10-day step from mid-February to end of July (for more information see supplementary material). The strength and the significance of relations between freeze-up/break-up dates and autumn/spring isotherm were estimated using Pearson product-moment correlation.

Additional Information

How to cite this article: Šmejkalová, T. et al. Arctic lakes show strong decadal trend in earlier spring ice-out. Sci. Rep. 6, 38449; doi: 10.1038/srep38449 (2016).

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


  1. Blenckner, T. et al. In The Impact of Climate Change on European Lakes (ed. George, G. ) 339–358 (Springer Netherlands, 2010).

  2. Adrian, R. et al. Lakes as sentinels of climate change. Limnol. Oceanogr. 54, 2283–2297 (2009).

    ADS  Article  Google Scholar 

  3. Hodgson, D. & Smol, J. P. In Polar Lakes and Rivers (Oxford University Press, 2008).

  4. Livingstone, D. M., Adrian, R., Blenckner, T., George, G. & Weyhenmeyer, G. A. In The Impact of Climate Change on European Lakes (ed. George, G. ) 51–61 (Springer Netherlands, 2010).

  5. Palecki, M. A. & Barry, R. G. Freeze-up and break-up of lakes as an index of temperature changes during the transition seasons: A case study for Finland. J. Clim. Appl. Meteorol. 25, 893–902 (1986).

    ADS  Article  Google Scholar 

  6. Robertson, D. M., Ragotzkie, R. A. & Magnuson, J. J. Lake ice records used to detect historical and future climatic changes. Clim. Change 21, 407–427 (1992).

    ADS  Article  Google Scholar 

  7. IPCC. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. (Cambridge University Press, 2013).

  8. Jeong, J.-H. et al. Intensified Arctic warming under greenhouse warming by vegetation–atmosphere–sea ice interaction. Environ. Res. Lett. 9, 94007 (2014).

    Article  Google Scholar 

  9. Screen, J. A. & Simmonds, I. The central role of diminishing sea ice in recent Arctic temperature amplification. Nature 464, 1334–1337 (2010).

    CAS  ADS  PubMed  PubMed Central  Google Scholar 

  10. McBean, G. In Arctic Climate Impact Assessment - Scientific Report (Cambridge University Press, 2005).

  11. Magnuson, J. American Fisheries Society Symposium 32, (American Fisheries Society, 2002).

  12. Benson, B. J. et al. Extreme events, trends, and variability in Northern Hemisphere lake-ice phenology (1855–2005). Clim. Change 112, 299–323 (2012).

    ADS  Article  Google Scholar 

  13. Livingstone, D. M. Large-scale climatic forcing detected in historical observations of lake ice break-up. In Verhandlungen der Internationalen Vereinigung für Theoretische und Angewandte Limnologie (ed. Williams, W. D. ) 27(5), 2775–2783 (2000).

    Google Scholar 

  14. Sharma, S. & Magnuson, J. J. Oscillatory dynamics do not mask linear trends in the timing of ice breakup for Northern Hemisphere lakes from 1855 to 2004. Clim. Change 124, 835–847 (2014).

    ADS  Article  Google Scholar 

  15. Brown, L. C. & Duguay, C. R. The response and role of ice cover in lake-climate interactions. Prog. Phys. Geogr. 34, 671–704 (2010).

    Article  Google Scholar 

  16. Prowse, T. et al. Past and future changes in arctic lake and river ice. AMBIO 40, 53–62 (2011b).

    Article  Google Scholar 

  17. Menard, P., Duguay, C. R., Flato, G. M. & Rouse, W. R. Simulation of ice phenology on Great Slave Lake, Northwest Territories, Canada. Hydrol. Process. 16, 3691–3706 (2002).

    ADS  Article  Google Scholar 

  18. Woo, P. D. M. In Permafrost Hydrology 305–346 (Springer Berlin Heidelberg, 2012).

  19. Lei, R., Leppäranta, M., Cheng, B., Heil, P. & Li, Z. Changes in ice-season characteristics of a European Arctic lake from 1964 to 2008. Clim. Change 115, 725–739 (2012).

    ADS  Article  Google Scholar 

  20. Dee, D. P. et al. The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q. J. R. Meteorol. Soc. 137, 553–597 (2011).

    ADS  Article  Google Scholar 

  21. Korhonen, J. Long-term changes in lake ice cover in Finland. Nord. Hydrol. 37, 71–78 (2006).

    Article  Google Scholar 

  22. Efremova, T., Palshin, N. & Zdorovennov, R. Long-term characteristics of ice phenology in Karelian lakes. Est. J. Earth Sci. 62, 33–41 (2013).

    Article  Google Scholar 

  23. Blenckner, T., Järvinen, M. & Weyhenmeyer, G. A. Atmospheric circulation and its impact on ice phenology in Scandinavia. Boreal Environ. Res. 9, 371–380 (2004).

    Google Scholar 

  24. Latifovic, R. & Pouliot, D. Analysis of climate change impacts on lake ice phenology in Canada using the historical satellite data record. Remote Sens. Environ. 106, 492–507 (2007).

    ADS  Article  Google Scholar 

  25. Surdu, C. M., Duguay, C. R., Brown, L. C. & Fernández Prieto, D. Response of ice cover on shallow lakes of the North Slope of Alaska to contemporary climate conditions (1950–2011): radar remote-sensing and numerical modeling data analysis. The Cryosphere 8, 167–180 (2014).

    ADS  Article  Google Scholar 

  26. Alaska Climate Research Center. Temperature changes in Alaska (2014).

  27. Arp, C. D., Jones, B. M., Liljedahl, A. K., Hinkel, K. M. & Welker, J. A. Depth, ice thickness, and ice-out timing cause divergent hydrologic responses among Arctic lakes. Water Resour. Res. 51, 9379–9401 (2015).

    ADS  Article  Google Scholar 

  28. Arp, C. D., Jones, B. M. & Grosse, G. Recent lake ice-out phenology within and among lake districts of Alaska, USA Limnol. Oceanogr. 58, 16 (2013).

    Article  Google Scholar 

  29. Prowse, T., Bonsal, B. R. & Lacroix, M. P. Trends in river-ice breakup and related temperature controls. in Ice in the Environment: Proceedings of the 16th IAHR International Symposium on Ice3, 64–71 (International Association of Hydraulic Engineering and Research, 2002).

  30. Duguay, C. R. et al. Recent trends in Canadian lake ice cover. Hydrol. Process. 20, 781–801 (2006).

    ADS  Article  Google Scholar 

  31. Mueller, D. R., Hove, P. V., Antoniades, D., Jeffries, M. O. & Vincent, W. F. High Arctic lakes as sentinel ecosystems: Cascading regime shifts in climate, ice cover, and mixing. Limnol. Oceanogr. 54, 2371–2385 (2009).

    ADS  Article  Google Scholar 

  32. Prowse, T. et al. Effects of changes in arctic lake and river ice. AMBIO 40, 63–74 (2011c).

    Article  Google Scholar 

  33. Vincent, W. F. et al. Ecological Implications of Changes in the Arctic Cryosphere. AMBIO 40, 87–99 (2011).

    Article  Google Scholar 

  34. Smol, J. P. et al. Climate-driven regime shifts in the biological communities of arctic lakes. Proc. Natl. Acad. Sci. USA 102, 4397–4402 (2005).

    CAS  ADS  Article  Google Scholar 

  35. Anderson, N. J., D’andrea, W. & Fritz, S. C. Holocene carbon burial by lakes in SW Greenland. Glob. Change Biol. 15, 2590–2598 (2009).

    ADS  Article  Google Scholar 

  36. Bastviken, D., Tranvik, L. J., Downing, J. A., Crill, P. M. & Enrich-Prast, A. Freshwater methane emissions offset the continental carbon sink. Science 331, 50–50 (2011).

    CAS  ADS  Article  Google Scholar 

  37. Yvon-Durocher, G. et al. Methane fluxes show consistent temperature dependence across microbial to ecosystem scales. Nature 507, 488–491 (2014).

    CAS  ADS  Article  Google Scholar 

  38. Rowland, J. C. et al. Arctic Landscapes in Transition: Responses to Thawing Permafrost. Eos Trans. Am. Geophys. Union 91, 229–230 (2010).

    ADS  Article  Google Scholar 

  39. Lehner, B. & Döll, P. Development and validation of a global database of lakes, reservoirs and wetlands. J. Hydrol. 296, 1–22 (2004).

    ADS  Article  Google Scholar 

  40. Paltan, H., Dash, J. & Edwards, M. A refined mapping of Arctic lakes using Landsat imagery. Int. J. Remote Sens. 36, 5970–5982 (2015).

    ADS  Article  Google Scholar 

  41. Masuoka, E. et al. In Land Remote Sensing and Global Environmental Change (eds Ramachandran, B., Justice, C. O. & Abrams, M. J. ) 509–531 (Springer: New York, 2011).

  42. Jönsson, P. & Eklundh, L. TIMESAT—a program for analyzing time-series of satellite sensor data. Comput. Geosci. 30, 833–845 (2004).

    ADS  Article  Google Scholar 

  43. Sen, P. K. Estimates of the Rregression coefficient based on Kendall’s Tau. J. Am. Stat. Assoc. 63, 1379 (1968).

    Article  Google Scholar 

  44. Zhang, X., Vincent, L. A., Hogg, W. D. & Niitsoo, A. Temperature and precipitation trends in Canada during the 20th century. Atmosphere-Ocean 38, 395–429 (2000).

    Article  Google Scholar 

  45. Bronaugh, D. & Werner, A. Zhang + Yue-Pilon trends package (2013).

Download references


We would like to thank E. Kuusisto (Finnish Environment Institute SYKE) for providing in situ observations from the area of Lapland. We also thank C. Surdu and J. Zhang who provided critical insight and advice that greatly improved this manuscript and M. Latinovic and K. Reuss-Schmidt for useful discussions. This research was undertaken as a part of the NERC-funded project ‘Lakes and the Arctic carbon cycle’. (NE/K000349/1) and supported by Erasmus Mundus Masters Programme.

Author information




M.E.E. and J.D. conceived and designed the study. T.Š. acquired, processed and analysed the data. M.E.E. and J.D. contributed to the interpretation. T.Š. drafted the manuscript and designed the figures with significant input and revision from all co-authors.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Electronic supplementary material

Rights and permissions

This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Šmejkalová, T., Edwards, M. & Dash, J. Arctic lakes show strong decadal trend in earlier spring ice-out. Sci Rep 6, 38449 (2016).

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing