Abstract
In contrast to Hermitian systems, the modes of nonHermitian systems are generally nonorthogonal. As a result, the power of the system signal depends not only on the mode amplitudes but also on the phase shift between them. In this work, we show that it is possible to increase the mode amplitudes without increasing the power of the signal. Moreover, we demonstrate that when the system is at the exceptional point, any infinitesimally small change in the system parameters increases the mode amplitudes. As a result, the system becomes unstable with respect to such perturbation. We show such instability by using the example of two coupled waveguides in which loss prevails over gain and all modes are decaying. This phenomenon enables compensation for losses in dissipative systems and opens a wide range of applications in optics, plasmonics and optoelectronics, in which loss is an inevitable problem and plays a crucial role.
Introduction
Recent developments in nanoscience have led to dramatic decreases in system size. The inherent property of such smallsize systems is the impossibility of separation of the environment from the system under consideration. For this reason, the investigation of open and, in particular, nonHermitian systems has been among the main topics of physics over the last decade^{1,2,3,4,5,6,7,8}.
NonHermitian systems are of interest due to their specific properties that are not present in Hermitian systems. In general, the eigenstates of nonHermitian systems are not orthogonal^{4,5,6,7}, in contrast to Hermitian systems. The maximal degree of nonorthogonality is reached at the exceptional point (EP). The EP is a point in the parameter space at which two or more eigenstates coalesce to one eigenstate. As a result, the eigenstates become linearly dependent^{4,7} and do not form the basis^{9}. The existence of the EP in various types of physical systems such as microwave cavities^{10}, optical microcavities^{11,12} and chaotic optical microcavity^{13} has been demonstrated. The existence of the EP leads to nontrivial topology of the system spectrum^{10,14}. In ref. 14 it was shown theoretically that the adiabatic encircling of the EP in the complex plane of system parameters leads to a phase shift of the system state. This phase shift is analogous to the geometrical (Berry) phase in quantum mechanics^{9,10}. In ref. 10 such a geometric phase was measured for optical microcavity modes when an EP was encircled. The geometrical phase has also been observed in waveguides with spatial changes in parameters^{15}. The physical properties of the EP may be useful for sensor applications^{11,12}.
In recent years, much attention has been paid to the investigation of EPs in PTsymmetric^{1,2,3,4,5,6,7} and quasiPTsymmetric systems^{16}. A system is called PTsymmetric if its Hamiltonian is invariant under the combined operations of parity () and time () reversal^{1,2,3}. The important property of PTsymmetric systems is that their spectrum may be both real and complex^{1,2,3}. The values of the system parameters at which the transition from real to complex spectrum occurs form the point of phase transition^{1,2,3,6,7,8}. In PTsymmetric systems, the EP and the point of phase transition from the real spectrum to the complex spectrum coincide^{7}. Recently, quantum and optical PTsymmetric systems have been actively investigated both experimentaly^{16,17,18,19,20,21,22,23,24} and theoretically^{1,2,3,6,7,8,25,26,27,28,29,30,31}.
Periodic perturbations may lead to instability of the PTsymmetric system when such perturbations shift the system parameters. In this case, the system spectrum becomes complex and some eigenmodes undergo exponential growth^{32,33,34}.
In this work, we investigate an optical nonHermitian system in which the parameters change periodically, losses exceed gain and all eigenmodes are decaying. We show that changes to the parameters of this nonHermitian system may result in increased of eigenmode amplitudes without simultaneously increasing the power of the system signal during the change. The increased amplitudes of the eigenmodes lead to increased amplitudes of the power oscillations. If such perturbations are repeated with the half period of power oscillations, then the amplitudes of the eigenmodes and the power of system signal grow infinitely.
In general, not all parameters perturbations result in increasing of amplitudes of the eigenmodes. However, we demonstrate that when the system is at the EP any infinitesimally small change in the system parameters leads to increasing amplitudes of the eigenmodes. As a result, the system becomes unstable with respect to such perturbations. Thus, a new effect occurs in optical nonHermitian systems: parametric instability near the exceptional point (PIEP). We illustrate the phenomenon of PIEP in the case of two coupling waveguides with gain and loss when the loss in one waveguide is more than the gain in the other. In this system, the total power may increase infinitely, even when all waveguide modes are always decaying. This phenomenon opens a wide range of applications in optics, plasmonics and optoelectronics, in which loss is an inevitable problem and plays a crucial role.
Results
Nonorthogonality of eigenmodes of nonHermitian systems: power oscillations and nonexponential transient behavior
Before introducing the concept of PIEP, we review the important properties of nonHermitian systems. The nonorthogonality of eigenmodes in a nonHermitian system leads to power oscillation^{5,6}. This phenomenon is the consequence of the dependence of the power of the system signal on both the amplitudes and (in contrast to a Hermitian system) the phases of the eigenmodes. Hereinafter, we restrict our consideration to optical systems. The following consideration is applicable to the optical modes of microcavities and to the modes of waveguide systems.
For simplicity, we consider the waveguide system with two modes. The electric field envelope in the system in point r has the form^{6,8,16,17}
where a_{i} and k_{i} are the initial amplitudes and wavenumbers of the modes, respectively; ϕ_{i}(x, y) is the transverse field distribution in the ith mode. The eigenmode amplitudes should be chosen such that . In waveguide systems, the power of the signal is defined as^{6,35} .
In a nonHermitian system the eigenmodes are not orthogonal, . If the wavenumbers of the modes are real, that is, Imk_{1} = Imk_{2} = 0 (as in a PTsymmetric system below the exceptional point), then the power of the signal has the form
where , k = Re(k_{1} − k_{2}), and we suppose that the origin of coordinate is , see also Methods. In other words, the power oscillates during propagation; see Fig. 1a and also 6. We designate the diagonal term in (2) a_{1}^{2} + a_{2}^{2} as P^{av} and the nondiagonal one A cos(kz + θ) as P^{osc}. Note that P^{av} equals the average value of the power during propagation.
If all the wavenumbers are decaying, that is, Imk_{1} < 0 and Imk_{2} < 0, then the system exhibits nonexponential transient behavior^{36}:
Nonorthogonality of the eigenmodes leads to power oscillations when the total power in the system oscillates during propagation^{5,6}. Additionally, due to the nonorthogonality of eigenmodes, nonHermitian systems may exhibit nonexponential behavior^{36} when all the eigenmodes are decaying. In this case, during the first stage, the power increases compared with the initial value and decreases exponentially in the second stage^{36} (Fig. 1a). The increasing power in the first stage is the consequence of the field concentration in the gain layers. The field redistribution in the second stage leads to the exponential decay of the field amplitude^{36}.
Note that when gain is absent in the system, the power is also described by Eq. (3). However, it cannot be amplified, which means the system parameters should obey certain conditions^{35}.
Nonexponential behavior and power oscillation relate to the nonorthogonality of eigenmodes. The maximal degree of nonorthogonality is reached at the EP. At this point, the spectrum of the system is degenerate, that is, k_{1} = k_{2} = k and the eigenmodes are equal to each other, i.e., they do not form the basis^{37}.
Parametric amplification in a system with nonorthogonal eigenmodes
Power oscillation, which we describe above, can be used for the parametric amplification of the power. To demonstrate, we expose the system to periodic perturbation, which redistributes the power between diagonal P^{av} and nondiagonal P^{osc} terms.
Let the perturbation begin at coordinate z = z_{i} and stop at coordinate z = z_{f} so that the parameters of the system take unperturbed values after perturbation. In addition, we require that this perturbation does not change the power of the system signal. Then in the case in which Imk_{1} = Imk_{2} = 0, from Eq. (2), we have the following relation:
where the subscripts i and f correspond to the initial and final states. Here, (kz_{f} + θ_{f}) denotes the phase mismatch between the amplitudes of the first and second eigenmodes after perturbation. The diagonal part of the power after perturbation equals
Now, we choose the perturbation such that at initial coordinate z = z_{i} the nondiagonal part is positive, that is, cos(kz_{i} + θ_{i}) > 0, while at z = z_{f}, the nondiagonal part is negative, that is, cos(kz_{f} + θ_{f}) < 0. In this case, the diagonal part of the power at the end of the perturbation will be larger than at the beginning of the perturbation. The increase in the diagonal part of the power is accompanied by increases in the amplitude of the system eigenmodes a_{1} and a_{2}. At the same time, the total power of the system signal does not change (see the dynamics in Fig. 1b from z_{i} to z_{f}).
We illustrate the influence of the interference term cos(kz + θ) on the power of the system signal in Fig. 2, where possible values of a_{1} and a_{2} at fixed values of power and phase shift are shown. The most favorable case for increasing the amplitudes of the eigenmodes is when cos(kz_{i} + θ_{i}) = 1, cos(kz_{f} + θ_{f}) = −1 and a_{1} ≈ a_{2}. At a fixed value of the total power of the system signal, the amplitudes of the eigenmodes are minimal when cos(kz + θ) = 1 and maximal when cos(kz + θ) = −1 and a_{1} = a_{2} (Fig. 2). Thus, the conditions cos(kz_{i} + θ_{i}) = 1 for the initial state of the system (point i on line 5 in Fig. 2) and cos(kz_{f} + θ_{f}) ≈ −1, a_{1} ≈ a_{2} for the final state (point f on line 1 in Fig. 2) are optimal for increasing the eigenmode amplitudes.
Now, if we repeat such a perturbation with a period equal to an odd number of half periods of power oscillation, e.g., Δ = π/Re(k_{1} − k_{2}), we will have permanent growth of the power in the system (Fig. 1b).
The power in the system may grow even when all the wavenumbers at any coordinate have negative imaginary parts, that is, Imk_{1} < 0, Imk_{2} < 0. In this case, perturbation of the system redistributes the power between diagonal and nondiagonal terms, which leads to increased eigenmode amplitudes, as in the previous case. The total power of the system signal increases in the coordinate interval when the parameters do not change and all the wavenumbers are constant and have negative imaginary parts (Imk_{1} < 0, Imk_{2} < 0), whereas during perturbation, the power decreases. Conversely, eigenmode amplitudes increase during perturbation and decrease otherwise (see also next section and Fig. 3a,b).
Describing suitable perturbation
As mentioned above, to increase the power of the signal, the following conditions should be satisfied: cos(kz_{i} + θ_{i}) ≈ 1, cos(kz_{f} + θ_{f}) ≈ −1, a_{1} = a_{2}. In a optical nonHermitian system, such perturbation can be simply achieved near the EP, where two eigenmodes almost coincide with each other. Let us introduce the normalized state ϕ_{⊥}(x, y), which is orthogonal to the first of the eigenmode: , . Then, the electric field of second eigenmode ϕ_{2}(x, y) can be written in the form , where . Note that near the EP, we have c ≪ 1 (in the EP ϕ_{1}(x, y) = ϕ_{2}(x, y)). At z = z_{i}, let the system state be
where : that is, we have the same phase θ as in Eq. (2).
Consider an external perturbation that changes the system parameters such that at z = z_{f}, the system state takes the form
The expansion E_{f} (x, y) in the system eigenmodes gives
From (8), we see that when the perturbation is such that b_{2}/b_{1} ≪ c, the amplitudes of the eigenmodes after perturbation (expansion coefficients of E_{f} (x, y) in (8)) are approximately equal by modulus and have opposite signs:
Equations (8) and (9) show that the final state corresponds to the phases cos(kz_{f} + θ_{f}) ≈ −1, a_{1} ≈ a_{2}. Thus, if the chosen initial state corresponds to the phases cos(kz_{i} + θ_{i}) ≈ 1, then the perturbation satisfies all conditions for the observation of power amplification. After a half period of power oscillation, Δ = π/Re(k_{1} − k_{2}), we have again cos(kz + θ) = 1 and the perturbation may be repeated. Near the EP, c ≈ 0 and condition b_{2}/b_{1} ≫ c are satisfied automatically. It should be emphasized that this condition means that almost any perturbation increases the eigenmode amplitudes.
Note that in the considered case, the changing of the system parameters is nonadiabatic. The case of adiabatic perturbation near EP has been considered in ref. 38.
The nonHermitian character of the system is very important. Indeed, in the Hermitian system all eigenmodes are orthogonal (c = 1) and the power of the system signal does not depend on the phase mismatch between the amplitudes of the eigenmodes.
It should be noted that such tuning of perturbation to increase the power resembles a situation used in Hermitian systems to obtain parametric resonance. However, this resemblance is superficial. First of all, in our case, increasing power occurs when the parameters do not change, although the eigenmode amplitudes increase when the parameters change (see Fig. 1b, the dynamics from z_{i} to z_{f}). By contrast, in the case of parametric resonance, the power and eigenmode amplitudes increase simultaneously with the changes in the parameters. Second, in a nonHermitian system near the EP, almost any perturbation results in increasing eigenmode amplitudes, whereas in the case of parametric resonance in a Hermitian system, it is necessary to fulfill certain conditions^{39}. These key points allow us to consider this effect of parametric instability near the exceptional point (PIEP) as a new phenomenon and a distinctive feature of optical nonHermitian systems near the EP.
To summarize, in a optical nonHermitian system, a certain change in the system parameters leads to increasing eigenmode amplitudes. In EP, eigenmode amplitudes increase upon any change. Such an increase arises due to power transfer from the oscillating nondiagonal part to the diagonal part. As a result, the average power and the amplitude of the power oscillation also increase.
If we change the system parameters periodically with a period equal to an odd number of half periods of power oscillation, e.g., Δ = π/Re(k_{1} − k_{2}), then we will have permanent growth of the average power, limited only by nonlinear effects.
PIEP in an optical system
Above, we define the conditions under which PIEP takes place. Now, we provide an example of a system with PIEP. Let us consider a system consisting of two coupling waveguides in which the real parts of the waveguide refractive index are equal, that is, Re n_{1} = Re n_{2}, while the imaginary parts are different and have opposite signs, that is, Im n_{1} > 0, Im n_{2} < 0; loss exceeds gain, Im n_{1} ≥ Im n_{2}^{16}; and the distance between waveguides changes with the period Δ_{var} (see Fig. 3a).
Let the zaxis be directed along the waveguides. In coupledmode theory^{8,16,40}, the amplitudes of the electric field in the first and second waveguides are written in the form E_{1,2}(x, y, z) = F_{1,2}(x, y)u_{1,2}(z). The dependence of the u_{1}(z) and u_{2}(z) is described by the following system:
where β is the real part of the wavenumbers. For symmetry, we introduce half of the sum of the imaginary parts of the wavenumbers γ (which corresponds to common background damping or amplification) and half of the difference between the imaginary parts g. Here, κ(z) is the coupling constant, which depends on the distance between waveguides.
The wavenumbers of the system (10) are and the dependence of the field on the coordinate z in the system where κ does not depend on coordinate z is as follows:
where constants a_{1} and a_{2} are determined by the initial conditions. The total electric field in the system E(x, y, z) = E_{1}(x, y, z) + E_{2}(x, y, z) may be presented as in Eq.(1) with .
If κ^{2} ≥ g^{2}, then the imaginary parts of all wavenumbers are positive, Imk_{1,2} = γ > 0 and all eigenmodes are decaying.
When the coupling constant κ^{2} ≥ g^{2} does not depend on coordinate z, the power of the signal P nonexponentially depends on the distance. In the first stage, the power grows due to nonorthogonal eigenmodes of the system and then this growth is changed by the exponential decay. As a result, the power of the signal tends to zero when z → ∞; see also Fig. 1a and ref. 36.
We consider the case when the distance between waveguides is constant except for the region with length δz (a perturbation length), which is repeated with period Δ_{var} ≫ δz. In this situation parametric instability near the exceptional point may be observed. PIEP leads to the growth of the power of the signal in the system (P = u_{1}^{2} + u_{2}^{2}) (Fig. 3a). Note that we considered only the case when the condition κ^{2} ≥ g^{2} is satisfied at all z, i.e., Imk_{1,2} > 0 (Fig. 3c) and all eigenmodes decay. The power growth occurs even in this case (Fig. 3a) due to the parametric instability of the system near the exceptional point. Note that the power of the signal (P = u_{1}^{2} + u_{2}^{2}) before perturbation P_{i} is no less than the power after perturbation P_{f} (see Fig. 3a), although the amplitudes of the eigenmodes after perturbation are larger than before one (Fig. 3b). Thus, within the perturbation region, the total power of the signal decreases while the amplitudes of the eigenmodes increase and vice versa outside the perturbation region. This behavior validates the difference between PIEP and ordinary parametric resonance in a Hermitian system.
To observe PIEP, before perturbation the state should have the value cos(kz_{i} + θ_{i}) ≈ 1, whereas after perturbation, the state should have the value cos(kz_{f} + θ_{f}) ≈ −1. Here, kz + θ is the phase difference between the amplitudes of the eigenmodes. In the previous section, it has been shown that near the EP, any perturbation is suitable. This statement is confirmed by numerical simulation: condition cos(kz_{f} + θ_{f}) ≈ −1 is satisfied for a wide range of perturbation lengths δz (Fig. 4). Moreover, when the system parameters tend to the EP, the suitable perturbation length increases (Fig. 4).
For a perturbation length δz for which cos(kz_{f} + θ_{f}) ≈ −1, the transmission coefficient of the perturbed system is larger than for the unperturbed system (Fig. 4). The opposite situation is realized only for a small region δz in which cos(kz_{f} + θ_{f}) ≈ 1 (see Fig. 4). It is important that the transmission coefficient of the perturbed system is larger even if the period of perturbation Δ_{var} does not coincide with its optimal value Δ = π/Re(k_{1} − k_{2}). Figure 4 shows that power amplification occurs at almost any perturbation length. Thus, it is possible for the power to be unlimitedly amplified in a system where loss is dominated by gain and all eigenmodes decay. This effect is a particular case of the parametric instability near the exceptional point, whose general properties are described in the previous sections.
It should be noted that system parameters at which PIEP occurs are experimentally achievable. In ref. 16, a quasiPTsymmetric system consisting of two coupled waveguides has been realized for the cases κ/g < 2 and κ/g ≫ 1. This system is suitable for achieving PIEP.
Nonlinear effects
All previous consideration was focused on a linear system. However, when the amplitude u_{1,2} increases, it is necessary to consider nonlinear effects^{32,34,41,42,43,44,45} that may be connected, for example, to the saturation of the active medium. For this purpose, let us suppose that the amplification and losses in each waveguide depend on the field amplitude in the following equation^{46,47}
where α is the nonlinearity coefficient. Following from the results of the numerical simulation, PIEP also occurs in this case (Fig. 3d). The difference is that the power grows to some finite value that depends on the perturbation parameters δz and Δ_{var}. We provide a more careful analysis in a forthcoming paper.
Discussion
In this work, we show that perturbation of the parameters of optical nonHermitian system may result in increased eigenmodes amplitudes without increasing the power of the system signal during the perturbation. The increasing amplitude of the eigenmodes leads to increasing amplitudes of the power oscillations. We show that the maximal value of the amplitude increase results when the perturbation occurs at the moment when the power of the system signal has its maximum during oscillations. If such perturbations are repeated with the half period of power oscillations, the eigenmode amplitudes and power of the system signal can grow infinitely. This increase may occur even when all system eigenmodes are decaying. In the general case, not all parameter perturbations result in increasing eigenmode amplitudes. However, we demonstrate that when the system is at the exceptional point, any perturbation that changes the parameters of the system leads to increasing eigenmode amplitudes. As a result, the system becomes unstable with respect to such perturbation. This phenomenon is a new effect in optical nonHermitian systems: parametric instability near the exceptional point (PIEP).
We illustrate the phenomenon of PIEP in the case of two coupling waveguides with gain and loss, when the loss in one waveguide is more than the gain in the other and a coupling constant that is periodically perturbed. This system manifests PIEP. Changing the coupling constant leads to an increase in total power limited only by nonlinear effects. Moreover, we show that the transmission coefficient of such waveguides is larger than in a system with constant parameters. Near the EP, we have a wide range of changes in parameters at which parametric instability occurs (Fig. 4). These results correspond to the feature of parametric instability mentioned above.
The phenomenon of PIEP may be used in metamaterial, plasmonic and nanooptic devices whose applicability is substantially restricted by losses.
Methods
In optical systems that consist of coupled waveguides or coupled microcavities, the power of the signal is defined as^{6,35} . In the waveguide system with two eigenmodes ϕ_{1}(x, y) and ϕ_{2}(x, y), the power of the signal is given by the equation
Here, we use the normalization . In the case of modes of waveguide systems, P is the power of the signal propagating along the waveguides and z is the coordinate along the waveguide axis^{6,17,48}. In the case of optical modes of a microcavity, P is power and z is time^{35}.
In a Hermitian system, and Imk_{1} = Imk_{2} = 0, so the power of the signal is determined by the power of each mode and does not depend on the coordinate:
However, in a nonHermitian system, and the power of the signal is determined not only by the mode amplitudes but also by mode overlapping. By introducing k = Re(k_{1} − k_{2})^{5,6}, we can rewrite Eq. (13) in the form
where .
Additional Information
How to cite this article: Zyablovsky, A. A. et al. Parametric instability of optical nonHermitian systems near the exceptional point. Sci. Rep. 6, 29709; doi: 10.1038/srep29709 (2016).
References
Bender, C. M. & Boettcher, S. Real spectra in nonhermitian hamiltonians having p t symmetry. Phys. Rev. Lett. 80, 5243 (1998).
Bender, C. M., Brody, D. C. & Jones, H. F. Complex extension of quantum mechanics. Phys. Rev. Lett. 89, 270401 (2002).
Bender, C. M. Making sense of nonhermitian hamiltonians. Rep. Prog. Phys. 70, 947 (2007).
Moiseyev, N. NonHermitian quantum mechanics (Cambridge University Press, 2011).
Bagchi, B., Quesne, C. & Znojil, M. Generalized continuity equation and modified normalization in ptsymmetric quantum mechanics. Mod. Phys. Lett. A 16, 2047–2057 (2001).
Makris, K., ElGanainy, R., Christodoulides, D. & Musslimani, Z. H. Beam dynamics in p t symmetric optical lattices. Phys. Rev. Lett. 100, 103904 (2008).
Klaiman, S., Günther, U. & Moiseyev, N. Visualization of branch points in p tsymmetric waveguides. Phys. Rev. Lett. 101, 080402 (2008).
ElGanainy, R., Makris, K., Christodoulides, D. & Musslimani, Z. H. Theory of coupled optical ptsymmetric structures. Opt. Lett. 32, 2632 (2007).
Berry, M. V. Physics of nonhermitian degeneracies. Czech. J. Phys. 54, 1039 (2004).
Dembowski, C. et al. Encircling an exceptional point. Phys. Rev. E 69, 056216 (2004).
Wiersig, J. Enhancing the sensitivity of frequency and energy splitting detection by using exceptional points: application to microcavity sensors for singleparticle detection. Phys. Rev. Lett. 112, 203901 (2014).
Zhang, N. et al. Single nanoparticle detection using farfield emission of photonic molecule around the exceptional point. Sci. Rep. 5, 11912 (2015).
Lee, S.B. et al. Observation of an exceptional point in a chaotic optical microcavity. Phys. Rev. Lett. 103, 134101 (2009).
Dembowski, C. et al. Experimental Observation of the Topological Structure of Exceptional Points. Phys. Rev. Lett. 86, 787–790 (2001).
Doppler, J. et al. Dynamically encircling exceptional points in a waveguide: asymmetric mode switching from the breakdown of adiabaticity. arXiv, 1603.02325 (2016).
Guo, A. et al. Observation of p tsymmetry breaking in complex optical potentials. Phys. Rev. Lett. 103, 093902 (2009).
Rüter, C. E. et al. Observation of paritytime symmetry in optics. Nature Phys. 6, 192–195 (2010).
Ruschhaupt, A., Delgado, F. & Muga, J. Physical realization of ptsymmetric potential scattering in a planar slab waveguide. J. Phys. A 38, L171–L176 (2005).
Feng, L. et al. Nonreciprocal light propagation in a silicon photonic circuit. Science 333, 729–733 (2011).
Regensburger, A. et al. Paritytime synthetic photonic lattices. Nature 488, 167–171 (2012).
Feng, L. et al. Experimental demonstration of a unidirectional reflectionless paritytime metamaterial at optical frequencies. Nature Mat. 12, 108–113 (2013).
Peng, B. et al. Paritytimesymmetric whisperinggallery microcavities. Nature Phys. 10, 394–398 (2014).
Hodaei, H., Miri, M.A., Heinrich, M., Christodoulides, D. N. & Khajavikhan, M. Paritytimesymmetric microring lasers. Science 346, 975–978 (2014).
Fleury, R., Sounas, D. & Alù, A. An invisible acoustic sensor based on paritytime symmetry. Nature Comm. 6, 5905 (2015).
Longhi, S. Bloch oscillations in complex crystals with p t symmetry. Phys. Rev. Lett. 103, 123601 (2009).
Chong, Y., Ge, L. & Stone, A. D. P tsymmetry breaking and laserabsorber modes in optical scattering systems. Phys. Rev. Lett. 106, 093902 (2011).
Lin, Z. et al. Unidirectional invisibility induced by p tsymmetric periodic structures. Phys. Rev. Lett. 106, 213901 (2011).
Liertzer, M. et al. Pumpinduced exceptional points in lasers. Phys. Rev. Lett. 108, 173901 (2012).
Chtchelkatchev, N., Golubov, A., Baturina, T. & Vinokur, V. Stimulation of the fluctuation superconductivity by p t symmetry. Phys. Rev. Lett. 109, 150405 (2012).
Zyablovsky, A., Vinogradov, A., Dorofeenko, A., Pukhov, A. & Lisyansky, A. Causality and phase transitions in ptsymmetric optical systems. Phys. Rev. A 89, 033808 (2014).
Zyablovsky, A. A., Vinogradov, A. P., Pukhov, A. A., Dorofeenko, A. V. & Lisyansky, A. A. Ptsymmetry in optics. Phys. Usp. 57, 1063–1082 (2014).
Bludov, Y. V., Hang, C., Huang, G. & Konotop, V. V. Ptsymmetric coupler with a coupling defect: soliton interaction with exceptional point. Opt. Lett. 39, 3382–3385 (2014).
Konotop, V. V., Shchesnovich, V. S. & Zezyulin, D. A. Giant amplification of modes in paritytime symmetric waveguides. Phys. Lett. A 376, 2750–2753 (2012).
Driben, R. & Malomed, B. A. Stability of solitons in paritytimesymmetric couplers. Opt. Lett. 36, 4323–4325 (2011).
Wiersig, J. Sensors operating at exceptional points: General theory. Phys. Rev. A 93, 033809 (2016).
Makris, K., Ge, L. & Tureci, H. Anomalous transient amplification of waves in nonnormal photonic media. Phys. Rev. X 4, 041044 (2014).
Kato, T. Perturbation theory of linear operators (Springer, 1966).
Milburn, T. J. et al. General description of quasiadiabatic dynamical phenomena near exceptional points. Phys. Rev. A 92, 052124 (2015).
Landau, L. Mechanics: Volume 1 (Course Of Theoretical Physics) Author: LD Landau, EM Lifshitz, Publisher: Butterwor (ButterworthHeinemann, 1976).
Okamoto, K. Fundamentals of optical waveguides (Academic press, 2010).
Sukhorukov, A. A., Dmitriev, S. V., Suchkov, S. V. & Kivshar, Y. S. Nonlocality in ptsymmetric waveguide arrays with gain and loss. Opt. Lett. 37, 2148–2150 (2012).
Alexeeva, N., Barashenkov, I., Sukhorukov, A. A. & Kivshar, Y. S. Optical solitons in ptsymmetric nonlinear couplers with gain and loss. Phys. Rev. A 85, 063837 (2012).
Barashenkov, I., Suchkov, S. V., Sukhorukov, A. A., Dmitriev, S. V. & Kivshar, Y. S. Breathers in ptsymmetric optical couplers. Phys. Rev. A 86, 053809 (2012).
Sukhorukov, A. A., Xu, Z. & Kivshar, Y. S. Nonlinear suppression of time reversals in ptsymmetric optical couplers. Phys. Rev. A 82, 043818 (2010).
Dmitriev, S. V., Suchkov, S. V., Sukhorukov, A. A. & Kivshar, Y. S. Scattering of linear and nonlinear waves in a waveguide array with a ptsymmetric defect. Phys. Rev. A 84, 013833 (2011).
Miroshnichenko, A. E., Malomed, B. A. & Kivshar, Y. S. Nonlinearly ptsymmetric systems: spontaneous symmetry breaking and transmission resonances. Phys. Rev. A 84, 012123 (2011).
Dorofeenko, A. V., Zyablovsky, A. A., Pukhov, A. A., Lisyansky, A. A. & Vinogradov, A. P. Light propagation in composite materials with gain layers. Phys. Usp. 55, 1080–1097 (2012).
Longhi, S. Quantumoptical analogies using photonic structures. Laser Photon. Rev. 3, 243–261 (2004).
Acknowledgements
The authors thank Yu. E. Lozovik and N.M. Chtchelkatchev for a helpful discussion. This work was supported in part by RFBR grant nos. 1202010193 and 130200407, as well as by the “Dynasty” foundation.
Author information
Affiliations
Contributions
A.A.Z. and E.S.A. performed the theoretical calculations and numerical simulations; A.A.P. proposed the ideas and interpreted the results. All authors participated the discussions and prepared the manuscript.
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Rights and permissions
This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/
About this article
Cite this article
Zyablovsky, A., Andrianov, E. & Pukhov, A. Parametric instability of optical nonHermitian systems near the exceptional point. Sci Rep 6, 29709 (2016). https://doi.org/10.1038/srep29709
Received:
Accepted:
Published:
Further reading

Strongcouplingassisted formation of coherent radiation below the lasing threshold
Optics Express (2021)

Successive switching among four states in a gainlossassisted optical microcavity hosting exceptional points up to order four
Physical Review A (2021)

Application of nonHermitian Hamiltonian model in open quantum optical systems*
Chinese Physics B (2021)

Minimally asymmetric state conversion around exceptional singularities in a specialty optical microcavity
Journal of Optics (2019)

Lasing without inversion due to parametric instability of the laser near the exceptional point
Physical Review A (2019)
Comments
By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.