Scientific Reports 6: Article number: 24283; published online: 12 April 2016; updated: 27 June 2016.

This Article contains errors in the order of the References. The correct Reference list appears below.

  1. 1

    Froula, D., Glenzer, S. H., Luhmann, N. C. & Sheffield, J. In Plasma scattering of electro-magnetic radiation 2nd edn, Ch. 11, 309–334 (Academic Press, 2011).

  2. 2

    Pile, D. X-rays: First light from SACLA. Nat. Photon. 5, 456–457 (2011).

  3. 3

    Emma, P. et al. First lasing and operation of ångstrom-wavelength free-electron laser Nat. Photon. 4, 641–647 (2010).

  4. 4

    Glenzer, S. H. & Redmer, R. X-Ray Thomson scattering in high energy density plasmas. Rev. Mod. Phys. 81, 1625–1663 (2009).

  5. 5

    Evans, D. E. & Katzenstein, J. Laser light scattering in laboratory plasmas. Rep. Progr. Phys. 32, 207–271 (1969).

  6. 6

    Gregori, G., Glenzer, S. H., Rozmus, W., Lee, R. W. & Landen, O. L. Theoretical model of x-ray scattering as a dense matter probe. Phys. Rev. E 67, 026412 (2003).

  7. 7

    Glenzer, S. H. et al. Demonstration of Spectrally Resolved X-Ray Scattering in Dense Plasmas. Phys. Rev. Lett. 90, 175002 (2003).

  8. 8

    Glenzer, S. H. et al. Observations of Plasmons in Warm Dense Matter. Phys. Rev. Lett. 98, 065002 (2007).

  9. 9

    Garcia Saiz, E. et al. Probing warm dense lithium by inelastic x-ray scattering. Nature Phys. 4, 940–944 (2008).

  10. 10

    Kritcher, A. L. et al. Ultrafast X-ray Thomson Scattering of Shock-Compressed Matter. Science 322, 69–71 (2008).

  11. 11

    Brown, C. R. D. et al. Evidence for a glassy state in strongly driven carbon. Sci. Reports 4, 5214 (2014).

  12. 12

    Chapman, D. A. et al. Observation of Finite-Wavelength Screening in High-Energy-Density Matter. Nature Comm. 6, 6839 (2015).

  13. 13

    Peacock, N. J., Robinson, D. C., Forrest, M. J., Wilcock, P. D. & Sannikov, V. V. Measurement of the electron temperature by Thomson scattering in tokamak T3. Nature 224, 488–490 (1969).

  14. 14

    Forrest, M. J., Carolan, P. G. & Peacock, N. J. Measurement of the magnetic field in a tokamak using laser light scattering. Nature 271, 718–722 (1978).

  15. 15

    Nagler, B. et al. Turning solid aluminium transparent by intense soft X-ray photoionization. Nature Phys. 5, 693–696 (2009).

  16. 16

    Emma, P. et al. First lasing and operation of ångstrom-wavelength free-electron laser Nat. Photon. 4, 641–647 (2010).

  17. 17

    Drake, R. P. In High energy density physics, Ch. 11, 461–464 (Springer, 2006).

  18. 18

    Hurricane, O. A. et al. Fuel gain exceeding unity in an inertially confined fusion implosion Nature 506, 343–348 (2014).

  19. 19

    Regan, S. P. et al. Inelastic X-Ray Scattering from Shocked Liquid Deuterium. Phys. Rev. Lett. 109, 265003 (2012).

  20. 20

    Gregori, G. et al. Thomson scattering measurements in atmospheric plasma jets. Phys. Rev. E. 59, 2286 (1999).

  21. 21

    Ichimaru, S. In Basic Principles of Plasma Physics, Ch. 7 Fluctuations, 251–255 Addison Wesley (1973).

  22. 22

    Crowley, B. J. B. & Gregori, G. X-ray scattering by many-particle systems. New J. Phys. 15, 015014 (2013).

  23. 23

    Kittel, C. In Introduction to solid state physics 8th edn, Ch. 2, 23–45 (Wiley, 2004).

  24. 24

    Chihara, J. Difference in X-ray scattering between metallic and non-metallic liquids due to conduction electrons. Phys. F:Met. Phys. 17, 295 (1987).

  25. 25

    Kadanoff, L. P. & Baym, G. Quantum Statistical Mechanics. W.A. Benjamin Inc. (1962).

  26. 26

    Kwong, N.-H. & Bonitz, M. Real-time Kadano-Baym approach to plasma oscillations in a correlated electron gas. Phys. Rev. Lett. 84, 1768 (2000).

  27. 27

    Gregori, G., Glenzer, S. H. & Landen, O. L. Generalized x-ray scattering cross section from nonequilibrium plasmas. Phys. Rev. E. 74, 026402 (2006).

  28. 28

    Gregori, G. et al. Derivation of the static structure factor in strongly coupled non-equilibrium plasmas for X-ray scattering studies. High Energy Density Physics 3, 99–108 (2007).

  29. 29

    Belyi, V. V. Fluctuation-Dissipation Relations for a Nonlocal Plasma. Phys. Rev. Lett. 88, 255001 (2002).

  30. 30

    Bornatici, M. & Kravtsov, A. Yu. Comparative analysis of two formulations of geometrical optics. The effective dielectric tensor. Plasma Phys. Controlled Fusion 42, 255 (2000).

  31. 31

    Pitaevskii, L. P. & Lifshitz, E. M. Physical Kinetics. Butterworth-Heinemann (1981).

  32. 32

    Pines, D. & Nozieres, P. In The Theory of Quantum Liquids, Ch. 2, 130–136 (Westview Press, 1999).

  33. 33

    Döppner, T. et al. Temperature measurement through detailed balance in x-ray Thomson scattering. High Energy Dens. Phys. 5, 182–186 (2009).

  34. 34

    Fäustlin, R. R. et al. Observation of Ultrafast Nonequilibrium Collective Dynamics in Warm Dense Hydrogen. Phys. Rev. Lett. 104, 125002 (2010).

  35. 35

    Chapman, D. A. & Gericke, D. O. Analysis of Thomson Scattering from Nonequilibrium Plasmas. Phys. Rev. Lett. 107, 165004 (2011).

  36. 36

    Glenzer, S. H. et al. Thomson Scattering from High-Z Laser-Produced Plasmas. Phys. Rev. Lett. 82, 97–100 (1999).

  37. 37

    Rozmus, W., Glenzer, S. H., Estabrook, K. G., Baldis, H. A. & MacGowan, B. J. Modeling of Thomson Scattering Spectra in High-Z, Laser-produced Plasmas. Astrophys. J. Suppl. S. 127, 459–463 (2000).

  38. 38

    Falk, K. et al. Comparison between x-ray scattering and velocity-interferometry measurementsfrom shocked liquid deuterium. Phys. Rev. E 87, 043112 (2013).

  39. 39

    Chapman, D. A. et al. Simulating x-ray Thomson scattering signals from high-density, millimetre-scale plasmas at the National Ignition Facility Phys. Plasmas 21, 082709 (2014).

  40. 40

    Sperling, P., Liseykina, T., Bauer, T. & Redmer, R. Time-resolved Thomson scattering on high-intensity laser-produced hot dense helium plasmas New J. Phys. 15, 025041 (2013).

  41. 41

    Buhmann, S. Y., Butcher, D. T. & Scheel, S. Macroscopic quantum electrodynamics in nonlocal and nonreciprocal media. New J. Phys. 14, 083034 (2012).

In addition, there is a typographical error in the Introduction section,

“This limitation becomes particularly restrictive when considering the ultra-short x-ray pulses and near diffraction limited laser spot sizes of fourth generation light sources15,16”.

should read:

“This limitation becomes particularly restrictive when considering the ultra-short x-ray pulses and near diffraction limited laser spot sizes of fourth generation light sources3,15”.