Abstract
It has been proposed that ~3.4 billion years ago an ocean fed by enormous catastrophic floods covered most of the Martian northern lowlands. However, a persistent problem with this hypothesis is the lack of definitive paleoshoreline features. Here, based on geomorphic and thermal image mapping in the circum-Chryse and northwestern Arabia Terra regions of the northern plains, in combination with numerical analyses, we show evidence for two enormous tsunami events possibly triggered by bolide impacts, resulting in craters ~30 km in diameter and occurring perhaps a few million years apart. The tsunamis produced widespread littoral landforms, including run-up water-ice-rich and bouldery lobes, which extended tens to hundreds of kilometers over gently sloping plains and boundary cratered highlands, as well as backwash channels where wave retreat occurred on highland-boundary surfaces. The ice-rich lobes formed in association with the younger tsunami, showing that their emplacement took place following a transition into a colder global climatic regime that occurred after the older tsunami event. We conclude that, on early Mars, tsunamis played a major role in generating and resurfacing coastal terrains.
Similar content being viewed by others
Introduction
The existence of an early Mars northern ocean1,2,3,4,5,6,7 remains a fundamental mystery8,9. During the Hesperian Period (~3.71 to 3.37 Ga; ages herein based on Neukum chronology as given in Michael)10, Mars’ ancient hydrosphere was apparently cold-trapped within vast systems of subsurface aquifers underneath a thick, ice-rich permafrost zone7. Groundwater outbursts at the end of the Hesperian may have generated catastrophic floods that produced an ocean in the northern lowlands, as evidenced by a deposit that covers most of this region and generally exhibits a roughly topographically equipotential margin1,2,3,4,5,6,7,11,12. Radar-sounding data are consistent with the deposit being comprised of mostly water-ice13. This deposit is identified as the Late Hesperian lowland unit (lHl) on the latest geologic map of Mars14. However, until now, the lack of wave-cut paleoshoreline features9 and the presence of lobate margins8,12 appeared to be inconsistent with the Late Hesperian paleo-ocean hypothesis. Our new geologic mapping in Chryse Planitia and northwestern Arabia Terra regions reveals previously undistinguished, older and younger members of the unit (lHl1 and lHl2, respectively, Fig. 1A). Both members are bounded by south-facing lobes that are typically tens of kilometers in length and width; however, in Chryse Planitia these dimensions reach a few hundred kilometers in scale (Fig. 1B, Fig. S1). The lobes reach upland boundary surfaces distributed between approximately −4087 m and −3191 m of elevation (Fig. S2). These deposits embay dozens of streamlined promontories scattered over a surface area of ~570,000 km2 (Fig. 1B,C).
In THEMIS night-time infrared images, the upper reaches of the older deposit that were emplaced along Arabia and Tempe Terrae (member lHl1 (Fig. 1A)) appear thermally bright (i.e., rocky exposures)15 and abruptly transition upland-ward into thermally dark (i.e., fine-grained sediments)15 surfaces (e.g., Figs 2A,B and 3B). Close-up views show that the bright surfaces consist of boulder deposits, with individual boulders typically meters in diameter (Figs 2C and 3E, Fig. S3D). Exhumation of the boulder deposit from beneath ejecta blanket materials along impact crater rims (black arrows in Fig. 2B,C), as well as distinct onlapping contacts (e.g., Fig. S3C), show that the deposit overlies the thermally dark surfaces consisting of finer-grained materials (e.g., Figs 2A,B and 3B). Throughout spatially disconnected locations in the eastern part of northwestern Arabia Terra, the marginal parts of member lHl1 cover low-slope ramps that are extensively dissected by NNW-trending (Fig. S4A) sets of aligned channels (e.g., Fig. 3A–D). These channels were first identified in Viking data (but only locally along Arabia Terra in association with an older “lowland unit A”)1.
Upslope flows leading to the emplacement of the lHl unit are implied by the highland-facing orientation of the deposits’ lobes as well as their relief gains, which commonly are a few hundred meters (e.g., Fig. 1A,B, Figs. S5, S6). These characteristics rule out emplacement by gravity-driven downslope moving flows such as debris, flood, glacier and lava flows. Uphill unidirectional winds can generate elongate aeolian deposits known as wind streaks. However, these deposits are largely composed of saltating sand-sized lithic particles that are deposited in scattered patches on the lee sides of topographic obstacles (typically impact craters), exhibit surface bedforms, generally cover hills and mesas situated along their paths, and mostly have length-to-width ratios >1 (ref. 16). In contrast, the lobes of member lHl1 include boulders several meters in diameter (Figs 2C and 3E, Fig. S3D), and those of member lHl2 appear to be mostly composed of water-ice6,12,13,14. In addition, the lobes in both members diverge around numerous mesas (e.g., Fig. 1C) as well as broad rises (e.g., Fig. S3), and have length-to-width ratios mostly <1 (Fig. S1) (which is consistent with uphill flow along with substantial lateral spreading). Therefore, we propose that the two unit lHl members represent deposits emplaced by highly energetic, sediment-rich tsunami waves that originated from a Late Hesperian paleo-ocean.
In Deuteronilus Mensae, extensive troughs cut the boundary scarps covered by member lHl1. The troughs are locally intruded by member lHl2run-up lobes (e.g., Fig. 2D), indicating that they formed during the time interval separating the two tsunami events. Active resurfacing leading to the formation of these troughs likely lasted a few million years and could have been the result of Late Hesperian glacial erosion17. Crater-count statistics show that, while the deposits formed during the Late Hesperian Epoch, their absolute ages could differ as much as several tens of millions of years (see supplementary crater statistics).
The boulder deposits of member lHl1 drape over, and therefore postdate, the incision of adjoining highland channels (e.g., orange arrow in Fig. S3A), ruling out upland fluvial systems as possible discharge sources. Highly energetic, boulder-rich tsunami fronts on Earth show diversion around topographic obstacles as they propagate onshore18. Similarly, member lHl1 boulder deposits exhibit well-defined landward lobate margins around broad promontories (Fig. S3A–C). Member lHl1 boulders range from rounded to angular and are as much as ~10 m in diameter (Figs 2C and 3E, Fig. S3D), which are also characteristics of some terrestrial tsunami deposits18. Thus, we interpret the member lHl1lobes as made up of lowland and boundary clastic materials that were captured and transported by a tsunami wave, then beached farther inland as the wave lost its momentum.
Subsequently, we suggest that rapid gravity-forced backwash of the tsunami wave into the paleo-ocean dissected the channel systems on the marginal parts of member lHl1 in the eastern part of northwestern Arabia Terra (Fig. 3A–D). These channels have remarkable similarities to terrestrial tsunami backwash channels; including the presence of aligned channel heads19 (black arrows in Fig. 3C), perpendicular orientations to the reconstructed paleoshoreline19 (Fig. S4A), streamlined bars composed of reworked boulders20,21 (Fig. 3D,E), and widths ranging between ~50 and ~200 m (refs 19,22) (Fig. 3C,D). Parker et al.23 observed a few of these parallel channel systems in Arabia Terra using lower-resolution image data, and they also interpreted them as tsunami backwash channels.
The lower terminations of the proposed backwash channels are generally truncated by younger scarps (Figs 2D and 3C, Fig. S4A). However, the identification of a possibly subaqueously emplaced sedimentary lobe adjoining the lower reaches of a set of these channels located at ~−3795 m in elevation (Fig. S4B) provides an approximate upper boundary to the paleoshoreline from which the older tsunami propagated (Fig. 4A). The lowest margins of the mapped lHl2lobes are at ~−4100 m in elevation (Fig. S2), which we have used as an upper bound to the paleoshoreline elevation from which the younger tsunami propagated (Fig. 4B). The elevation difference between the two paleoshorelines implies a decrease in ocean level of ~300 m, which could have taken place via evaporation/sublimation within several million years6.
Based on these paleo-oceanographic reconstructions, we estimate that the areas inundated by the older and younger tsunamis within the study region were ~8 × 105 km2 and ~1 × 106 km2, respectively (Fig. S5). Measured typical run-up distances are tens to a few hundred kilometers for both the older and younger tsunamis, and their respective maxima reach ~529 km and ~650 km (Fig. S6). Overall, the morphometric characterizations of both tsunamis are strikingly similar. The slightly larger inundation area that was apparently covered during the younger event is consistent with the tsunami extending from a lower shoreline, and therefore, flowing over relatively smooth, older ocean and tsunami deposits. These run-up distances and inundation areas are enormous by terrestrial standards, which explain why the backwash channels exhibit lengths of ~20 km, while some terrestrial examples of backwash channel lengths produced by much smaller tsunamis range between ~200 and ~300 m in length22.
Our mapping (Fig. 1, Fig. S6) shows comparatively shorter run-up distances along the rougher and steeper cratered topography of the Arabia Terra boundary terrains, indicative of relatively lower wave heights and velocities, as predicted by tsunami numerical simulations24. These simulations also indicate that as the waves overflowed the Arabia Terra cratered boundary, their velocities would have abruptly dropped below the ~1 m/s threshold required to move multi-meter-scale boulders, explaining the occurrence of the boulder deposits in the region (Figs 2C and 3E, Fig. S3D). On the other hand, the more gentle slopes in Chryse Planitia would have resulted in a more gradual decrease in wave velocity, leading to the emplacement of more sorted sedimentary lobes, with their distal-most areas primarily consisting of finer-grained sediments. In addition, prior to their inundation by tsunami waves, the highland boundary surfaces were likely covered by extensive boulder fields, which would have been captured and redistributed by the waves, which is also another important factor accounting for the regional prevalence of boulder-rich lobes. In Chryse Planitia the tsunamis would have mostly propagated over gently-sloping plains that were largely made up of less bouldery outflow channel sedimentary deposits14.
The simulations also show that bolide impacts causing craters ~30 km in diameter would have generated tsunami waves with typical onshore heights of ~50 m and local variations from ~10 m to as much as ~120 m (ref. 24). Using run-up distances measured in 71 topographic profiles (Fig. S6), we have calculated the tsunami wave heights and find that they reasonably match the simulations’ predicted ranges24 (see supplementary calculations). In addition, whereas the simulations do not describe the hydrodynamic behavior of the backwash stage, the formation of several marine impact craters on Earth has also resulted in documented tsunami backwash channels25.
Using the surface area of the paleo-ocean’s region included in the numerical simulation by Iijima et al.24 (i.e., ~4.5 × 106 km2) and the crater production function of Ivanov26, we find that ~23 marine impact craters ≥30 km in diameter would have formed within this part of Mars during the Late Hesperian Epoch (3.61–3.37 Ga)10,27. Of these, 7 fit in the diameter range of 30–35 km, which was used in the tsunami simulations24. The prediction is that, within the particular region of the ocean analyzed here, on average about 2 impact craters ~30 km in diameter formed every 30 million years during this time period. Therefore, within statistical constraints for the deposits’ surface ages and for crater production rates, impacts can account for generation of both lHl members as tsunami deposits (see supplementary crater statistics).
Briny aqueous chemistry models show that the ocean could have remained in liquid form over millions of years, and consequently mostly free of an ice cover even during cryogenic climatic conditions28. Another geologic scenario invokes the formation of an ice-covered ocean soon after the ocean’s emplacement6. However, no numerical simulations have been performed to detail the behavior of impact-related tsunamis24 on these types of Martian marine environments.
High rates of marine, and subsequent periglacial6,12,14 resurfacing, likely reduced the topography of the tsunami-generating crater structures. Such resurfacing can also explain the lack of well-preserved impact craters predating the Amazonian Period in the northern lowlands12. The frequency rate of ~30 km in diameter impact craters for the entire ocean’s surface area (~24 × 106 km2, as determined by Head et al.3) is one every 2.7 million years during the Late Hesperian. Although we have only identified evidence for two tsunami events in our study area, other regions in the northern plains likely experienced similar tsunami-related coastal resurfacing, perhaps associated with other impacts, huge landslides, or large marsquakes. Older but less extensive tsunami deposits may have been completely resurfaced by more recent events with similar run-up distances. Thus, the mapped tsunami margins comprise only the largest magnitude tsunami events located at the highest elevations.
Many of the lHl1 lobes are mostly made up of lithic deposits and exhibit backwash modifications. In contrast, the landward-facing lobate termini of unit lHl2 lack evidence indicative of a backwash phase subsequent to their emplacement. Like on Earth, the absence of backwash features associated with these flows could have been the result of the waves transitioning into sub-aerial sediment-laden slurry flows extending over low gradient surfaces29,30 (supplementary calculations), which can also explain the presence of possible contractional folds along the margins of some of the member’s lobes (e.g., black arrow in Fig. 2D). However, the lHl2lobes appear to be mostly composed of water-ice6,12,13,14, suggesting that the transition into slurry likely involved the formation and incorporation of a significant proportion of ice particles. In May 2013, the Saskatchewan Water Security Agency filmed an ice surge in the Codette Reservoir near Nipawin, Saskatchewan, Canada. The surge comprises a spectacular terrestrial analog of rarely observed catastrophic ice-rich flows leading to the emplacement of enormous lobate fronts, which are remarkably similar to those of member lHl2(video link included in ref. 31).We propose that these morphologic differences might be linked to colder environmental conditions following the first tsunami event.
Our mapping of two unit lHl members as tsunami lobes is consistent with the occurrence of two paleoshoreline levels of a receding Martian northern plains ocean during the Late Hesperian (Fig. 4, Fig. S5). However, resurfacing by the tsunami waves has obscured the paleoshorelines, thus making rigorous testing of their equipotentiality impossible.
Mapping Methodology
Mapping in this investigation was performed using Esri’s ArcGIS® 10.3 software (http://www.esri.com/software/arcgis). Embayment and overlapping relationships leading to the recognition of the outer margins of members lHl1 and lHl2 involved an integrated analysis of (1) thermal infrared image data (i.e., Mars Odyssey Thermal Emission Imaging System (THEMIS) night-time and day-time infrared image mosaics (100 m per pixel)), (2) visible image data (i.e., Mars Reconnaissance Orbiter Context Camera (CTX, (5.15–5.91 m/pixel)) images, and (3) Mars Global Surveyor Mars Orbital Laser Altimeter (MOLA, ~460 m/pixel horizontal and ~1 m vertical resolution) digital elevation models. In some areas, contacts are buried underneath ejecta blanket materials or are locally resurfaced; we mapped these sections as uncertain contacts (Fig. 2A).
Additional Information
How to cite this article: Rodriguez, J. A. P. et al. Tsunami waves extensively resurfaced the shorelines of an early Martian ocean. Sci. Rep. 6, 25106; doi: 10.1038/srep25106 (2016).
References
Parker, T. J., Gorsline, D. S., Saunders, R. S., Pieri, D. C. & Schneeberger, D. M. Coastal geomorphology of the Martian northern plains. J. Geophys. Res. 98, 11061–11078 (1993).
Fairén, A. G. et al. Episodic flood inundations of the northern plains of Mars. Icarus 165, 53–67 (2003).
Head, J. W. et al. Possible ancient oceans on Mars: Evidence from Mars Orbiter Laser Altimeter data. Science 286, 2134–2137 (1999).
Parker, T. J., Saunders, R. S. & Schneeberger, D. M. Transitional morphology in west Deuteronilus Mensae, Mars: Implications for modification of the lowland/upland boundary. Icarus 82, 111–145 (1989).
Carr, M. H. & Head, J. W. Oceans on Mars: An assessment of the observational evidence and possible fate. J. Geophys. Res. 108, 5042, 10.1029/2002JE001963 (2003).
Kreslavsky, M. A. & Head, J. W. Fate of outflow channel effluent in the northern lowlands of Mars: The Vastitas Borealis Formation as a sublimation residue from frozen ponded bodies of water. J. Geophys. Res. 107, 5121, 10.1029/2001JE001831 (2002).
Clifford, S. M. & Parker, T. J. The evolution of the martian hydrosphere: Implications for the fate of a primordial ocean and the current state of the northern plains. Icarus 154, 40–79 (2001).
Tanaka, K. L. Sedimentary history and mass flow structures of Chryse and Acidalia Planitiae, Mars. J. Geophys. Res. 102, 4131–4149 (1997).
Malin, M. C. & Edgett, K. S. Oceans or seas in the Martian northern lowlands: High resolution imaging tests of proposed coastlines. Geophys. Res. Lett. 26, 3049–3052 (1999).
Michael, G. G. Planetary surface dating from crater size-frequency distribution measurements: Multiple resurfacing episodes and differential isochron fitting. Icarus 226, 885–890 (2013).
Baker, V. R. Water and the martian landscape. Nature 412, 228–236 (2001).
Tanaka, K. L., Skinner, J. A. & Hare, T. M. Geologic map of the northern plains of Mars, (2005) (Date of access: (24/11/2015). U.S. Geological Survey Scientific Investigations Map 2888, scale 1:15,000,000 (1 mm = 15 km) at 90°N and 1:7,500,000 at 0°N, http://pubs.usgs.gov/sim/2005/2888/.
Mouginot, J., Pommerol, A., Beck, P., Kofman, W. & Clifford, S. M. Dielectric map of the Martian northern hemisphere and the nature of plain filling materials. Geophys. Res. Lett. 39, L02202, 10.1029/2011GL050286 (2012).
Tanaka, K. L. et al. Geologic map of Mars, (2014) (Date of access: (24/11/2015). U.S. Geological Survey Scientific Investigations Map 3292, scale 1:20,000,000, http://pubs.usgs.gov/sim/3292/.
Christensen, P. R. et al. Morphology and composition of the surface of Mars: Mars Odyssey THEMIS results. Science 300, 2056–2061 (2003).
Rodriguez, J. A. P. et al. The sedimentology and dynamics of crater-affiliated wind streaks in western Arabia Terra, Mars and Patagonia, Argentina. Geomorphology 121, 30–54 (2010).
Davila, A. F. et al. Evidence for Hesperian glaciation along the Martian dichotomy boundary. Geology 41, 755–758 (2013).
Goto, K., Miyagi, K., Kawamata, H. & Imamura, F. Discrimination of boulders deposited by tsunamis and storm waves at Ishigaki Island, Japan. Marine Geology 269, 34–45 (2010).
Fagherazzi, S. & Du, X. Tsunamigenic incisions produced by the December 2004 earthquake along the coasts of Thailand, Indonesia and Sri Lanka. Geomorphology 99, 120–129 (2008).
Eaton, J. P., Richter, D. H. & Ault, W. U. The tsunami of May 23, 1960, on the Island of Hawaii. Seis. Soc. Am. Bull. 51, 135–157 (1961).
Sugawara, D., Minoura, K. & Imamura, F. In Tsunamiites – Features and Implications (eds Shiki, T., Y. Tsuji, T. Yamazaki & K. Minoura ) Ch. 3, 9–49 (Elsevier, 2008).
Goto, K., Sugawara, D., Abe, T., Haraguchi, T. & Fujino, S. Liquefaction as an important source of the A.D. 2011 Tohoku-Oki tsunami deposits at Sendai Plain, Japan. Geology 40, 887–890 (2012).
Parker, T. J. East Acidalia shoreline morphology at MRO and CTX image scales. Lunar and Planetary Science Conference, 2551 (2009).
Iijima, Y., Goto, K., Minoura, K., Komatsu, G. & Imamura, F. Hydrodynamics of impact-induced tsunami over the Martian ocean. Planet. Space Sci. 95, 33–44 (2014).
Schulte, P. et al. Tsunami backwash deposits with Chicxulub impact ejecta and dinosaur remains from the Cretaceous–Palaeogene boundary in the La Popa Basin, Mexico, Sedimentology 59, 3, 737–765 (2012).
Ivanov, B. A. Mars/Moon cratering rate ratio estimates. Space Sci. Rev. 96, 87–104 (2001).
Werner, S. C. & Tanaka, K. L. Redefinition of the crater-density and absolute-age boundaries for the chronostratigraphic system of Mars. Icarus 215, 603–607 (2011).
Fairén, A. G. A cold and wet Mars. Icarus 208, 165–175 (2010).
Goto, K., Hashimoto, K. D. S., Yanagisawa, H. & Abe, T. Spatial thickness variability of the 2011 Tohoku-oki tsunami deposits along the coastline of Sendai Bay. Mar. Geol. 358, 38–48 (2014).
Paris, R. et al. Tsunamis as geomorphic crises: Lessons from the December 26, 2004 tsunami in Lhok Nga, West Banda Aceh (Sumatra, Indonesia). Geomorphology 104, 59–72 (2009).
Ice Surge - Saskatchewan Water Security Agency, (2013) (Date of access: (24/03/2016)). YouTube, https://www.youtube.com/watch?v=OgMBQFf64JM.
Christensen, P. R. et al. THEMIS Public Data Releases, Image Explorer, (2006), (Date of access: 11/24/2015), Planetary Data System node, Arizona State University, http://themis-data.asu.edu.
Acknowledgements
Funding for JAPR was provided by NASA’s Planetary Geologic and Geophysics Program, NASA NPP and KAKENHI 25120006. KLT was also funded by NASA’s Planetary Geologic and Geophysics Program. AGF was supported by the Project “icyMARS”, funded by the European Research Council, Starting Grant No. 307496. TP was supported by a DFG Grant (PL613/2-1). VCG was funded by MRO HiRISE Co-Investigator funds. HM was funded by KAKENHI 25120006. Publications costs were covered by the Project “icyMARS”, funded by the European Research Council, Starting Grant No. 307496. We are thankful to Alexander Cox for his valuable editing.
Author information
Authors and Affiliations
Contributions
J.A.P.R. developed the core hypotheses, wrote most of the main text, prepared Figures 1,2,3–4, and the supplementary Figures. A.G.F. and K.L.T. contributed to the overall design and structure of the manuscript. A.G.F. conceived and wrote text related to ocean liquid stability under freezing climatic conditions. K.L.T. produced the supplementary crater statistics. M.Z., R.L., H.M. and J.Y. developed the numerical supplement. T.P. estimated the production rates for impact craters ≥30 km in diameter. G.K. contributed to the comparative planetology and tsunami wave propagation discussions. J.S.K., V.G., V.R.B. and N.G. contributed to the development of specific aspects of the proposed hypotheses. K.H. produced GIS analyses used in the supplementary figures. All authors discussed the data and reviewed the manuscript.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Rights and permissions
This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/
About this article
Cite this article
Rodriguez, J., Fairén, A., Tanaka, K. et al. Tsunami waves extensively resurfaced the shorelines of an early Martian ocean. Sci Rep 6, 25106 (2016). https://doi.org/10.1038/srep25106
Received:
Accepted:
Published:
DOI: https://doi.org/10.1038/srep25106
This article is cited by
-
Exploring the evidence of Middle Amazonian aquifer sedimentary outburst residues in a Martian chaotic terrain
Scientific Reports (2023)
-
Lacustrine sedimentation by powerful storm waves in Gale crater and its implications for a warming episode on Mars
Scientific Reports (2023)
-
Evidence of an oceanic impact and megatsunami sedimentation in Chryse Planitia, Mars
Scientific Reports (2022)
-
The Kasei Valles, Mars: a unified record of episodic channel flows and ancient ocean levels
Scientific Reports (2020)
-
The 1997 Mars Pathfinder Spacecraft Landing Site: Spillover Deposits from an Early Mars Inland Sea
Scientific Reports (2019)
Comments
By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.