Abstract
Inequalities of information entropic play a fundamental role in information theory and have been employed effectively in finding bounds on optimal rates of various informationprocessing tasks. In this paper, we perform the first experimental demonstration of the informationtheoretic spin1/2 inequality using the highfidelity entangled state. Furthermore, we study the evolution of information difference of entropy when photons passing through different noisy channels and give the experimental rules of the information difference degradation. Our work provides an new essential tool for quantum information processing and measurement and offers new insights into the dynamics of quantum correlation in open systems.
Introduction
Braunstein and Caves first conceptually proposed a twoparty Nsetting information entropic Bell inequalities (BC chained Bell inequalities). It was shown that local realism imposes nontrivial conditions already on the level of the Shannon entropies. The Shannon entropies carried by the measurements on two distant systems must satisfy certain inequalities^{1,2}. The information entropic Bell inequalities have some interesting applications in situations where the CHSH Bell inequalities are inadequate. For instance, the information entropic Bell inequalities can readily be applied to quantum systems of arbitrary local dimension and general measurement operators. Since the inequalities are independent on the number of outcomes of the measured observables, they can reduce the number of trials needed to rule out local realism in experiments^{3}.
Especially, with the rapid development of quantum information theory and applications, information entropic inequalities are used as a fundamental tool in the context of quantum information processing and measurement^{4}. For instance, the use of information entropic Bell inequalities in quantum computation to solve “database” search problem^{5} and marginal problems^{6}, to test quantum contextuality^{7}, to demonstrate the entanglement swapping experiment^{8} and to study the general correlation and causal model scenarios^{9,10}, to mention a few. Moreover, the information entropic Bell inequalities with higher values of N (the number of measurable quantities) can improve the security of quantum key distribution protocols^{11} and have been also used to investigate nonlocal theories^{12,13}. Furthermore, analogous to the entropic Bell inequalities derived by Braunstein and Caves, entropic properties of quantum states have been widely studied^{14} in the framework of qdeformed entropic functions like the Reniy entropy^{15} and the Tsallis entropy^{16}. All the mentioned above information and entropic schemes for quantum systems open new prospectives for implementation of quantum technologies, e.g., realization of quantum algorithms, quantum memory devices and manylevel quantum simulation^{17}. However, experimental demonstration and verification of the entropic inequalities are very difficult due to the stringent requirement of system states^{13,18}. To our knowledge, the experimental report on information entropy inequalities is very few.
An unavoidable coupling between a real quantum system and its environment can cause decoherence, leading to the destruction of quantum correlation among subsystems simultaneously. This in turn can hinder the success of quantum information protocols. Expecially, how to characterize and extract the information of quantum noisy channels is essential not only for designing optimal dynamical protection from decoherence caused by a given environment of quantum information processing, quantumstate transfer, Hamiltonian engineering and quantum state storage, but also for playing a fundamental role on understanding physical processes^{19,20,21,22,23,24}. Therefore, the characterization of quantum correlation evolution under the influence of decohering processes is required for any future realization of these quantum information applications and some works have been reported in several papers^{25,26,27}. However, information theoretic formulations of the quantum correlation in the presence of decoherence and noise were not addressed by now.
In this paper, for the first time we experimentally demonstrate the informationtheoretic spin1/2 Bell inequality. Moreover, we study the information difference degradation in the bitflip and phaseshift noises environment and give the experimental rules of the information difference evolution. The results show that the correlation between spacelike separated entangled quantum system can be quantified using the quantum information entropy.
Results
Theoretical model
Braunstein and Caves proposed an Nsetting generalization of the CHSH Bell inequality. Consider two counterpropagating spins particles, A and B and N = 2Q measurable quantitiesA_{1}, ···, A_{Q} associated with A and B_{1}, ···, B_{Q} associated with Binterleaved in a sequence A_{1}, B_{Q}, A_{2}, B_{Q−1}, ···, A_{Q−1}, B_{2}, A_{Q}, B_{1}. Objectivity and locality justify a joint probability for the N quantities. Then the information Bell inequality can be obtained
The H(AB) is the information carried by A, given the value of B.
To investigate violation by quantum mechanics, we must return to the two spins particles considered above. The N measurable quantities, and for j = 1, 2, ···, Q are spin components specified by unit vectors If these vectors are coplanar and successive vectors in the list are separated by angle , then the chained information Bell inequality is violated when the information difference
is negative. The quantum mechanical information H^{QM}(AB) = H^{QM}(BA) ≡ H^{QM}(θ) takes the form , where is rotation matrix and this can be calculated from the relation
The above quantum statistics can be derived from the state of zero total spin: A spin1/2 particle has two states (−1/2〉) and (1/2〉) and can be given by
This state can be experimental realized using the polarization light field produced by pulsed typeII parametric downconversion. If we only consider the first order term of parametric downconversion, the quantum state is prepared, where H and V are horizontal and vertical polarization of photon, respectively. If we encode the 1/2, 1/2〉 and 1/2, −1/2〉 with the photon’s horizontal (H) and vertical (V) polarization, the quantum state is just the state (3).
Experiment model
The experimental setup is shown in Fig. 1. Ultraviolet laser pulses with a central wavelength of 390 nm, pulse duration of 100 fs and a repetition rate of 80 MHz pass through one βbarium borate (BBO) crystal with a thickness of 2 mm to produce two entangled photon pairs. The photons pass through a pair of birefringent compensators consisting of a halfwave plate (HWP) and a 1mm BBO crystal to compensate the walkoff between horizontal and vertical polarization and are prepared in the quantum state (H, V〉 + V, H〉). Output photons are guided to noise engineered setup and then well coupled into two singlemode fibers and finally detected by two singlephoton counting modules. In order to get the highest fidelity of our output states, the average pumping power of the laser is selected as 40 mW. It must be noted that the experimental verification of the entropic inequalities is very difficult due to the stringent fidelity requirements of system states^{1,5,6,7,8,9,10}. Thus, we take many methods to improve the fidelity of entangled state and obtain the fidelity for the two particle entangled state to be 0.997 ± 0.001, thus, prove the presence of genuine two particle entanglement^{28}.
We experimentally simulate the collective and noncollective rotation noise (bitflip and phaseshift noise) models. For the collective noise, all the qubits rotate along the Yaxis with a random angle. For simplicity, we chose the angle to be ±θ with an equal probability. Note that, for a single qubit, this is nothing but a bit flip noise with probability . The noncollective bitflip noise is achieved by setting the angle of the HWP in each channel to be ±θ independently. Experimentally, the noise channels were engineered by setting the angles of halfwave plates to be ±θ with an equal probability and each HWP was sandwiched by two quarterwave plates (QWPs) at 0° with respect to the vertical direction. Furthermore phaseshift noise is also simulated by adding two HWPs each setting at 45° before and after the waveplates.
Discussion
To verify the information entropic theoretic prediction, we first experimentally give the equivalent relation among the H^{QM}(0, θ/3), H^{QM}(θ/3, 2θ/3) and H^{QM}(2θ/3, θ) according to the rotational invariance and the symmetry of the experimental system. This step is significantly to decrease the amount of experimental measurement observables. In quantum mechanical description the two observables associated with each system would not commute and hence could not be determined simultaneously. Thus we have in mind a series of experimental runs, in each of which one measures only two quantities, one from each system. Since the two systems are widely separated, a measurement on one should not disturb the other. Based on the locality, the nodisturbance assumption means that the statistics of runs that measure a particular pair of quantities are given by the appropriate pair probability. The experimental results are shown in Fig. 2. It can be seen that the quantummechanical information H^{QM}(0, θ/3), H^{QM}(θ/3, 2θ/3) and H^{QM}(2θ/3, θ) are equal within the error range.
The theoretic and experimental results of information difference for information Bell inequality in bits are shown in Fig. 3. The black solid line is the theoretic result whereas the red solid line represents experimental result. It can be seen that quantum conditional entropies can be negative for entangled systems, which leads to a violation of entropic Bell inequalities. The negative value means the deficit information carried by the two particles, relative to the requirement of local realism for this geometry. The maximum theoretic information deficit for spin1/2 is −0.2369 bits at 52.31°. We obtained an experimental value of −0.227 ± 0.007. The experimental results agree well with the theoretical calculation. It should be point out that the difference between the theoretic and experimental value is bigger at the smallangle zone, which can be explained by the quantum Zeno paradox^{1}. For any θ, when N is sufficiently large, the quantum mechanical information can be approximated by the smallangle behavior, but the N1 measurements at the small angle θ/(N − 1) together yield vanishingly small information because of the tight correlation between the spins.
As mentioned above in introduction section, the investigation of the dynamics of quantum correlation for the quantum systems under the influence of decoherence has very important practical significance. Usually one has to deduce the time evolution of quantum correlation of the composite system from the time evolution of the quantum state under consideration. Much effort has been devoted to understanding the dynamics of entanglement^{29,30,31}. Instead of deducing the evolution of entanglement from the time evolution of the state, Thomas Konrad et al.^{32} provided a direct relationship between the initial and final entanglement of an arbitrary bipartite state of two qubits with one qubit subject to incoherent dynamics. Here, a new measurement method based on an information difference is introduced to quantify the quantum correlation evolution between different parties in collective and noncollective bitflip and phaseshift noises environment. Analogous to the method proposed by Thomas Konrad, our measurement method also did not consider time evolution, but only relies on the difference of quantum information carried by the entangled particles.
The experimental results are shown in Fig. 4. In Fig. 4(a,b) we give the change of information difference depending on the rotation angle of the HWP under the collective and noncollective bitflip noises environment. The zero information difference value is the critical point to estimate the quantum nonlocality and quantum correlation still existing or not between the two bit entangled system. The general behavior shows that the quantum correlation decreases as the noise intensity increases. However, the decreasing rate depends on the type of the noise–correlated or noncorrelated and noisy channels–bitflip or phaseshift. For the noncollective bitflip noise, the information difference is still negative when the rotation angle is 9.3°. While for the collective bitflip noise, the upper bound of rotating angles to destroy the quantum correlation property is 2.5°. By comparing the experimental results, it is obvious that the quantum correlation decays smoothly to reach its minimum bounds for collective noise. Figure 4(c) shows the quantum correlation degradation in the collective phaseshift noise environment. It can be seen that the upper bound of rotating angles to destroy the quantum correlation property is 3.5° for the collective phaseshift noisy environment. Comparing the experimental results in the presences of different noisy channels, we can see that the quantum correlation is more robust under the phaseshift noisy environment than the bitflip noises environment.
There are several open problems that require further investigation. First of all, it is natural to look for an extension of our result to higherlevel systems. Moreover, it is interesting to study the robustness of information difference in multiqubit or multiqudit systems using the chained information Bell inequality. Finally, the information capacity of an entangled qubit pair in quantum information does not depend on the amount of entanglement only. It is very meaningful to investigate the robustness of the capacities in quantum information process using the information entropic criteria.
In summary, we have performed the first experimental demonstration of informationtheoretic spin1/2 inequalities using the highfidelity entangled state. The concept that negative virtual information can be carried by entangled particles provides interesting insight into the information flow in quantum communication processes such as teleportation and superdense coding^{33}. Furthermore, we first give the experimental rules of quantum correlation variation using the information difference of entropic criteria under bitflip and phaseshift noises environment. The results improve our understanding of decoherence and will provide new strategies to control it. Our analysis offers new insights into the dynamics of entanglement in open systems.
Methods
Generation and optimization of the highfidelity twoqubit entanglement state
We used the UV pulses of a frequencydoubled modelocked Ti:sapphire laser (pulse length 100 fs) to pump a 2 mm thick BBO crystal at a wavelength of 390 nm and a repetition rate of 80 MHz with an average power of 40 mW. The pump beam is focused to a waist of 100 um inside the crystal. Next, the photons were sent through the quantum channel, where the noisy environment was simulated by a combination of birefringent QWP and HWP in each arm. The HWP is switched angles θ and the QWPs are set at 0° with respect to the vertical direction. Then, the degenerate downconversion emission passed through narrowband interference filters (3 nm) to exactly define the spatial and spectral emission modes. The polarization analysis is performed using further wave plates and polarizing beam splitters. Finally, the photons are coupled into single mode optical fibers and detected by silicon avalanche single photon detectors (D1 and D2). In order to improve the fidelity of entangled state, we have taken some methods: first, through many times experimental attempt, we get the optimal laser power, which can guarantee enough coincidence counting and visibility. Second, by inserting and fine tuning the QWP + HWP + QWP combination we can effectively improve the fidelity of entangled state. Finally, we get rid of the effect of dark count of measurement data.
Additional Information
How to cite this article: Cao, L.Z. et al. Experimental investigation of the information entropic Bell inequality. Sci. Rep. 6, 23758; doi: 10.1038/srep23758 (2016).
References
Braunstein, S. L. & Caves, C. M. Informationtheoretic Bell inequalities. Phys. Rev. Lett. 61, 662–665 (1988).
Braunstein, S. L. & Caves, C. M. Wringing out better Bell inequalities1. Ann. Phys. 202, 22–56 (1990).
Chen, Z. B., Fu, Y. & Zhao, Y. K. Violations of entropic Bell inequalities with coarsegrained quadrature measurements for continuousvariable states. Phys. Rev. A 90, 022124–4 (2014).
Bennett, C. H. & Shor, P. W. Quantum Information Theory. IEEE Transf. Inf. Theory 44, 2724–2742 (1998).
Morikoshi, F. Informationtheoretic temporal Bell inequality and quantum computation. Phys. Rev. A 73, 052308–5 (2006).
Fritz, T. & Chaves, R. Entropic inequalities and marginal problems. IEEE Transf. Inf. Theory 59, 803–817 (2013).
Kurzynski, P., Ramanthan, R. & Kaszlikowski, D. Entropic test of quantum contextuality. Phys. Rev. Lett. 109, 020404–4 (2012).
Chaves, R. Entropic inequalities as a necessary and sufficient condition to noncontextuality and locality. Phys. Rev. A 87, 022102–5 (2013).
Branciard, C., Gisin, N. & Pironio, S. Characterizing the nonlocal correlations created via entanglement swapping. Phys. Rev. Lett. 104, 170401–4 (2010).
Wood, C. J. & Spekkens, R. W. The lesson of causal discovery algorithms for quantum correlations: Causal explanations of Bellinequality violations require finetuning. New J. Phys 17, 33002–33030 (2015).
Barrett, J., Hardy, L. & Kent, A. No signaling and quantum key distribution. Phys. Rev. Lett. 95, 010503–4 (2005).
Colbeck, R. & Renner, R. Hidden variable models for quantum theory cannot have any local part. Phys. Rev. Lett. 101, 050403–4 (2008).
Cabello, A., Larsson, J. A. & Rodríguez, D. Minimum detection efficiency required for a loopholefree violation of the BraunsteinCaves chained Bell inequalities. Phys. Rev. A 79, 062109–7 (2009).
Chaves, R. & Fritz, T. Entropic approach to local realism and noncontextuality. Phys. Rev. A 85, 032113–7 (2012).
Rastegin, A. E. Tests for quantum contextuality in terms of qentropies. Quantum Inf. Comput. 14, 996–1103 (2014).
Conroy, J. M. & Miller, H. G. Determining the Tsallis parameter via maximum entropy. Phys. Rev. E 91, 052112 (2015).
Paraoanu, G. S. Recent progress in quantum simulation using superconducting circuits. J. Low. Temp. Phys. 175, 633–654 (2014).
Boschi, D., Branca, S., Martini, F. D. & Hardy, L. Ladder proof of nonlocality without inequalities: Theoretical and experimental results. Phys. Rev. Lett. 79, 2755–2758 (1997).
Farias, O. J., Latune, C. L., Walborn, S. P., Davidovich, L. & Ribeiro, P. H. S. Determining the dynamics of entanglement. Science 324, 1414–1417 (2009).
Khodjasteh, K., Sastrawan, J., Hayes, D., Green, T. J., Biercuk, M. J. & Viola, L. Designing a practical highfidelity longtime quantum memory. Nat. Commun. 4, 2045–8 (2013).
PazSilva, G. A., Rezakhani, A. T., Dominy, J. M. & Lidar, D. A. Zeno effect for quantum computation and control. Phys. Rev. Lett. 108, 080501–5 (2012).
Ajoy, A. & Cappellaro, P. Quantum simulation via filtered Hamiltonian engineering: application to perfect quantum transport in spin networks. Phys. Rev. Lett. 110, 220503–5 (2013).
Avarez, G. A., Shemesh, N. & Frydman, L. Coherent dynamical recoupling of diffusiondriven decoherence in magnetic resonance. Phys. Rev. Lett. 111, 080404–6 (2013).
Kucsko, G. et al. Nanometrescale thermometry in a living cell. Nature 500, 54–58 (2013).
Rastegin, A. E. On generalized entropies and informationtheoretic Bell inequalities under decoherence. Ann. Phys. 355, 241–257 (2015).
Kim, Y. S., Lee, J. C., Kwon, Q. & Kim, Y. H. Protecting entanglement from decoherence using weak measurement and quantum measurement reversal. Nat. Phys. 8, 117–120 (2012).
Kofman, A. G. Optimal conditions for Bellinequality violation in the presence of decoherence and errors. Quantum Inf. Process 11, 269–309 (2012).
Lu, H. X., Cao, L. Z., Zhao, J. Q., Li, Y. D. & Wang, X. Q. Extreme violation of local realism with a hyperentangled fourphotoneightqubit GreenbergerHorneZelinger state. Sci. Rep. 4, 4476–6 (2014).
Wajs, M., Kurzynski, P. & Kaszlikowski, D. Informationtheoretic Bell inequalities based on Tsallis entropy. Phys. Rev. A 91, 012114–5 (2015).
Lu, H. et al. Experimental realization of a concatenated GreenbergerHorneZeilinger state for macroscopic quantum superpositions. Nat. Photonics 8, 364–368 (2014).
Hu, J. W. & Yu, H. W. Entanglement dynamics for uniformly accelerated twolevel atoms. Phys. Rev. A 91, 012327–17 (2015).
Konrad, T. et al. Evolution equation for quantum entanglement. Nat. Phys. 4, 99–102 (2008).
Wang, X. L. et al. Quantum teleportation of multiple degrees of freedom of a single photon. Nature 518, 516–519 (2015).
Acknowledgements
This work was supported by the Natural Science Foundation of China (Grant No. 11174224, 11404246, 11447225), the Natural Science Foundation of Shandong Province (Grant No. BS2015DX015, ZR2013FM001, 2013SJGZ10), the Science and Technology Development Program of Shandong Province(Grant No. 2013YD01016, 2011YD01049) and Higher School Science and Technology Program of Shandong Province (Grant No. J13LJ54, J15LJ54).
Author information
Affiliations
Contributions
H.X.L., L.Z.C., J.Q.Z. and Z.B.C. had the idea for and initiated the experiment. X.L., Y.Y., Y.D.L. and X.Q.W. contributed to the general theoretical work. J.Q.Z. and L.Z.C. designed the experiment. L.Z.C., J.Q.Z., X.L. and Y.Y. carried out the experiment. Y.D.L. and X.Q.W. analysed the data. L.Z.C., J.Q.Z. and H.X.L. wrote the manuscript. H.X.L. supervised the whole project.
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Rights and permissions
This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/
About this article
Cite this article
Cao, L., Zhao, J., Liu, X. et al. Experimental investigation of the information entropic Bell inequality. Sci Rep 6, 23758 (2016). https://doi.org/10.1038/srep23758
Received:
Accepted:
Published:
Further reading

Experimentally Demonstrate the Spin1 Information Entropic Inequality Based on Simulated Photonic Qutrit States
Entropy (2020)

Experimental Detection of Information Deficit in a Photonic Contextuality Scenario
Physical Review Letters (2017)

Indistinguishability of causal relations from limited marginals
Physical Review A (2016)
Comments
By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.