Abstract
Quantum spin Hall (QSH) effect of twodimensional (2D) materials features edge states that are topologically protected from backscattering by timereversal symmetry. However, the major obstacles to the application for QSH effect are the lack of suitable QSH insulators with a large bulk gap. Here, we predict a novel class of 2D QSH insulators in Xdecorated plumbene monolayers (PbX; X = H, F, Cl, Br, I) with extraordinarily giant bulk gaps from 1.03 eV to a record value of 1.34 eV. The topological characteristic of PbX mainly originates from sp_{x,y} band inversion related to the lattice symmetry, while the effect of spinorbital coupling (SOC) is only to open up a giant gap. Their QSH states are identified by nontrivial topological invariant Z_{2} = 1, as well as a single pair of topologically protected helical edge states locating inside the bulk gap. Noticeably, the QSH gaps of PbX are tunable and robust via external strain. We also propose highdielectricconstant BN as an ideal substrate for the experimental realization of PbX, maintaining its nontrivial topology. These novel QSH insulators with giant gaps are a promising platform to enrich topological phenomena and expand potential applications at high temperature.
Introduction
Topological insulators (TIs)^{1,2,3,4}, as a new class of quantum materials, have generated intensive research activities in quantum information, because they give an alternative and robust platform for obtaining relativistic and spinpolarized Fermions in the condensed matter system. One of the most interesting phenomena in this realm is the quantum spin Hall (QSH) effect in twodimensional (2D) materials^{1,2}, characterized by an insulating bulkgap and gapless edge states at its boundaries due to timereversal symmetry (TRS), thus providing the enticing concepts for novel quantum electronic devices with low energy dissipation^{3,4}. The prototypical concept of QSH insulator is first proposed by Kane and Mele in graphene^{5,6}, in which the spinorbit coupling (SOC) opens a band gap at the Dirac point. However, the associated gap due to rather weak secondorder effective SOC is too small (~10^{−3} meV), which makes the QSH state in graphene only appear at an unrealistically low temperature. Quantized conductance through QSH edge states have only been experimentally demonstrated in HgTe/CdTe^{7,8} and InAs/GaSb^{9,10} quantum wells at the ultralow temperature, which greatly obstructs their potential applications in spintronics.
To be “good” QSH insulators, the materials should have a large bulkgap to realize the spinpolarized electron transport at room temperature. Controlling the chemical bonding at atomic levels to induce the band inversion^{3,4} by SOC is an efficient way to realize topologically nontrivial Z_{2} number^{8,11,12,13,14,15}. The 2D thin films are advantageous in this aspect as their bonding properties are easy to be modified in post synthesis processes, for example, by surface adsorption to enlarge SOC strength. GroupIV honeycomb lattices such as hydrogenated or halogenated germanene and stanene^{16,17} monolayers have been reported as a QSH phase with a bulkgap as large as 0.2–0.3 eV. However, most QSH phases in these systems are not intrinsic, but driven by external strain, thus are unfavorable for practical applications in spintronics. On the other hand, Rivero et al.^{18} recently reported the stability and properties of highbuckled 2D Sn and Pb thin films. They find that the optimal structure of fluorinated stanene lacks threefold symmetry and thus the experimental realization of 2D fluorinated one is challengeable. The strong SOC effect can also be sufficed in groupV heavy elements such as bismuth, which drives a nontrivial QSH state^{19}. Besides, an approach to design a largegap QSH state on a semiconductor surface by a substrate orbital filtering process is also proposed^{20,21}. More recently, the ethynylfunctionalized stanene has been reported to be a good QSH insulator^{22}. These largegap QSH insulators are essential for realizing many exotic phenomena and for fabricating new quantum devices that can operate at room temperature.
In this work, on the basis of firstprinciples calculations, we predicted a class of new QSH insulators in Xdecorated plumbene monolayers (PbX; X = H, F, Cl, Br and I), in analogy 2D hydrocarbon (graphane)^{23,24}. An extraordinarily nontrivial giantgap in the range of 1.03 ~ 1.34 eV were obtained, making the experimental observation of QSH phase facile. The topological characteristic of PbX was attributed to sp_{x,y} band inversion related to the lattice symmetry, while the effect of SOC was only to open up a giantgap. Interestingly, the QSH gaps of PbX were tunable and robust against external strain. Our findings had potential applications in lowpower quantum electronics and may enable topological quantum computing based on Majorana fermions^{25}.
Figure 1(a) shows the typical lattice structure of 2D PbX, in which the Pb atoms are in sp^{3} hybridization forming a hexagonal network, along with X being bonded to Pb atoms on both sides of the plane in an alternating manner. In comparison with the pristine plumbene in Fig. S1, all PbPb bonds in PbX slightly expand, while the buckling decreases clearly due to the weakly hybridization between π and σ orbitals, as listed in Table 1. We also note the similar results in halogenated germanene and stanene monolayers^{16,17}. The buckling plays a crucial role in the engineering of the band structures in these materials. The high structural stability is verified by the formation energy defined as
where E(PbX) and E(Pb) are the total energies of decorated and pristine plumbene, respectively, while E(X_{2}) is the chemical potential of hydrogen or halogen molecules. The calculated formation energy ΔE is found to be −1.89, −2.82, −1.48, −1.32 and −0.86 eV/atom for PbH, PbF, PbCl, PbBr and PbI, respectively, indicating no phase separation in these systems. Besides, we also calculate the phonon dispersion for PbX monolayers, as illustrated in Fig. 1(c) and Fig. S2. The frequencies of all modes are positive over the whole Brillouin zone, implying that PbX are thermodynamically stable.
We now focus on the band structures of PbH monolayer as an example. In the absence of SOC (Fig. 2(a)), the band gap at the K point is substantially enlarged due to the saturation of the Pbp_{z}, maintaining p_{x,y} level located at the Γ point. Thus, PbH can be regarded as a gapless semiconductor. By further projecting the bands onto different atomic orbitals, we find that the energy spectrums at the Γ point mainly come from one s and two p orbitals of Pb atoms. When the effect of SOC is taken into consideration (Fig. 2(b)), the energy degeneracy of p_{x,y} orbitals at the Γ point are lifted, indicating a semimetaltosemiconductor transition. Away from the Г point, the conduction bands are upshifted, whereas the valence bands are downshifted, which produces a global indirectgap as large as 0.98 eV, ample for applications at room temperature. These suggest that PbH could be TIs upon opening a bandgap at the touching point by SOC. To further confirm these results, we also have employed HSE06^{26} to check the electronic structures of PbH monolayer in Fig. S3, which are in good agreement with these obtained here.
The SOCinduced gap opening near the Fermi level indicates possible existence of 2D TI phase that are helical with the spinmomentum locked by TRS. Thus, we calculate the topological edge states of PbH by the Wannier90 package^{27}. We construct the maximally localized Wannier functions (MLWFs) and fit a tightbinding Hamiltonian with these functions. Figure 3(a) shows the DFT and fitted band structures, in well agreement with each other. Then, the edge Green’s function^{28} of a semiinfinite PbH is constructed and the local density of state (LDOS) of PbH is calculated, as shown in Fig. 3(c). Clearly, all the edge bands connect completely the conduction and valence bands and span the 2D bulk band gap, yielding 1D gapless edge states. Besides, the counterpropagating edge states exhibit opposite spin polarizations, in accordance with the spinmomentum locking of 1D helical electrons (Fig. 3(d)). On the other hand, we construct a zigzagedged nanoribbon, as shown in Fig. 3(e). All the edge Pb atoms are hydrogenated to eliminate the angling bonds. The width of the nanoribbon, 20.6 nm, is large enough to avoid interactions between the edge states of the two sides and the band structure of the nanoribbon is shown in Fig. 3(f). We can explicitly observe that the gapless edge states (red lines) that appear within the bulk gap and cross linearly at the Γ point, demonstrating the topological nontribal property of the bulk gap, which is consistent with the Fig. 3(b). In this case, the Dirac point located at the band gap is calculated to have a high velocity of ~1.0 × 10^{5} m/s, larger than that of 3.0 × 10^{4} m/s in InAs/GaSb quantum well^{9,10}, indicating that PbH is an ideal 2D TI.
To further confirm the topological edge states of PbH monolayer, we calculate the Z_{2} invariant v based on the method proposed by Fu and Kane^{29}, due to the presence of structural inversion symmetry. Here, the topological index ν can be established by
Where δ is the product of parity eigenvalues at the timereversalinvariant momenta (TRIM) points, ξ = ±1 are the parity eigenvalues and N is the number of the occupied bands. According to the Z_{2} classification, ν = 1 characterizes a topologically nontrivial phase and ν = 0 means a topologically trivial one. Here, the invariants Z_{2} are derived from the parities of wave function at the four TRIM points K_{i}, including Γ(0, 0), M_{1}(0, 1/2), M_{2}(1/2, 0) and M_{3}(1/2, 1/2), as illustrated in Fig. 1(d). From the calculated results in Fig. 2(c), we find the Z_{2} of PbH monolayer is +1, indicating that it is a QSH insulator.
To understand the physical origin of QSH state, we next do an orbital analysis around the Fermi level for PbH monolayer. As can be seen from density of states (DOS) in Fig. 3(c), the decorated H atoms hybridizes strongly with the dangling bonds of p_{z} orbital in Pb atoms overlapping in the same energy range, which effectively removes the p_{z} bands away from the Fermi level, leaving only the s and p_{x,y} states at the Fermi level. Thus, we present systematically the band evolution at the Γ point for PbH monolayer in Fig. 4(a). One can see that the chemical bonding and crystal field splitting between PbPb atoms make the s and p_{x,y} orbitals split into the bonding and antibonding states, i.e., and , which the superscripts + and − represent the parities of corresponding states, respectively. Noticeably, the band orders of PbH are different from the previous reported cases in GeH/SnH^{16,17}, where the lies below orbital, which leads to inversion of the bands around the Fermi level, to produce the crucial QSH effect. This is because that the modification of band order upon surface functionalization is related to the bond length and orbital splitting. The larger lattice constant of PbH monolayer (4.978 Å) results in a weaker sp hybridization and accordingly a smaller energy separation between the bonding and antibonding states. Thus, the orbital is downshifted while the orbital is upshifted, i.e., the will be occupied, while the quadruply degenerate is half occupied (due to the C_{3} rotation symmetry), resulting in semimetallic character (Fig. 2(a)). With the inclusion of SOC, the degeneracy of the level splits into state with a total angular momentum j = 3/2 and with a total angular momentum j = 1/2, opening a full band gap. Obviously, the adsorbed hydrogen atoms act like an orbital filter to selectively remove the p_{z} orbitals from the Pb lattice, maintaining a nontrivial sixband lattice with Z_{2} = 1^{30}. Here, an interesting feature of band structure is that the effect of SOC is only producing an band gap around the Fermi level, but not inducing band inversion, i.e., SOC is not relevant for the formation of nontrivial band orders. The brand new mechanism here may provide an efficient way to search for largegap QSH insulators in 2D materials^{20,21}. In fact, a similar situation has even been observed in wellknown 2D TIs such as graphene and silicene^{5,6,12}, where the inclusion of SOC does not change the band order between π and π* bands. However, the nontrivial QSH effect of graphene mainly originates from the massive Dirac cone^{5,6}, but the QSH phase in PbH is attributed to sp band inversion at Г the point, similar to that in the Bi_{2}Se_{3} or HgTe quantum well^{8,13}.
Here, it is worth emphasizing that the hydrogenation in plumbene is not the only way to achieve the giantgap QSH state, the same results can be obtained by decorating the surface with otherwise halogen atoms, such as F, Cl, Br and I. We thus performed calculations for PbX (X = F, Cl, Br, I) to check their topological properties, as illustrated in Figs S3–S5. Table 1 summarizes their lattice constants, PbPb bond lengths and nontrivial gaps at their equilibrium states. These results demonstrate that all the electronic structures of halogenated PbX monolayers are similar to PbH and exhibit nontrivial topological invariant Z_{2} = 1(Table S1). Noticeably, as can be seen in Fig. 4(c) and Fig. S2, the global QSH gaps of PbF, PbCl, PbBr and PbI are 1.34, 1.19, 1.15 and 1.03 eV, respectively, which are sufficiently large for practical applications at high temperature. On the other hand, we can find some interesting phenomena when comparing the band gaps with each other. It is known that, from F to I, the SOC becomes stronger in the order of F < Cl < Br < I, thus the SOC induced band gap should follow this trend. Since the band gaps of PbX monolayers are mainly determined by SOC strength near the Fermi level, this order also works. However, the fact is just opposite, where the band gaps of PbX decrease monotonically, namely, PbF > PbCl > PbBr > PbI. Further explanation of this interesting contradiction can be attributed to the band components of Pb atoms near the Fermi level, as its splitting induced by SOC can directly determine QSH gap. From Fig. 4(d), one can see that the ratio from the Pbp_{x,y} to bonded X orbital at the Γ point near the Fermi level decreases in the order of PbF > PbCl > PbBr > PbI. Considering that the Pb exhibits stronger SOC strength than X atoms, it is expected that the larger the ratio is, the larger the contribution to the orbital near the Fermi level and consequently the larger the SOC strength will be. As a result, we can understand why the global band gaps of these systems decrease in the contrary order of PbF > PbCl > PbBr > PbI.
The buckle structure generally sustain a larger strain than planar one, thus one might ask if these QSH insulators are robust under mechanical strain? In what follows, we investigate the effect of biaxial strain on topological properties of PbX monolayers. Here, we employ an inplane strain on PbX maintaining the crystal symmetry by changing its lattices as ε = (a − a_{0})/a_{0}, where the a (a_{0}) is strained (equilibrium) lattice constants. Figure 5 gives the variation of the direct gap (E_{g} (Γ)) at the Γ point and indirect gap (E_{g}) with respect to external strain, which indicates the interatomic coupling can indeed modulate the topological properties. Especially, the QSH feature is rather robust when the strain falls into the range from −6 to +8%. Both the direct and indirect gaps decrease slightly with respect to tensile strain, but their nontrivial bulkgaps within the strain range are still very large, i.e., larger than 0.96 eV of E_{g} for 8% strain for PbF monolayer. Such robust topology paves the easy way for experimental realization.
It is noticeable that, although the 2D QSH insulators have been extensively sought and studied theoretically and experimentally^{10,11,12,13,14,15,16,17,18,19,20,21}, but few TIs with a bulkgap exceeding 1.0 eV has been discovered up to now. Here, a giantgap as large as 1.34 eV in PbF monolayer is the largest bulkgap of all the reported 2D TIs, which are approximately four times the values of halogenated GeX/SnX films (~0.3 eV) and superstar 3D Bi_{2}Se_{3} film (~0.35 eV)^{13}. The topological states with a giantgap are mainly due to the contribution of p_{x} and p_{y} orbitals of Pb atoms, instead of the nextnearestneighbor SOC in the p_{z} states^{5,6}. These giant bulkgaps are advantageous for stabilizing the edge currents against the interference of thermally activated carriers in the bulk, which are beneficial to applications at room temperature.
On the experimental side, highquality plumbene film in a honeycomb lattice has been successfully grown on different substrates based on the MBE method^{31}. Also, a hydrogenated graphene and germanene^{32,33} are experimentally synthesized. Thus, it is expected that the PbX monolayers can also be fabricated or transferred on the substrate using similar techniques. As a 2D largegap insulator with a high dielectric constant, BN sheet has been successfully used as the substrate to grow graphene or assembled in 2D stacked nanodevices^{34,35}. Thus, we select the BN(4.53 Å) and BN2 × 2 (5.23 Å) as the substrate to support PbH monolayer. The substrate is modeled by placing 1–5 BN layers under PbH where all atoms in the bottom BN layer are fixed at bulk crystalline positions. To correctly describe the van der Waals interaction, we use a dispersioncorrected DFT method (optB88vdW)^{36,37}, which has been demonstrated to reliably describe 2D heterostructures. Figure 6(a,b) show the optimized geometrical structures obtained by examining various positions of the PbH relative to BN substrate. We find that the lattice mismatch is only about 0.05% and 0.41% for the BN and BN2 × 2 substrates, while the distance between adjacent layers are 3.697 Å and 3.578 Å, respectively. The binding energy is obtained to be 0.036 eV per unit cell, indicating a weak interaction between PbH and BN sheet. As expected from the band structure in Fig. 6(c,d), PbH on the BN sheet remains semiconducting. Bader charge analysis indicates that there is essentially no charge transfer between adjacent layers, thus the states around the Fermi level are dominantly contributed by PbH monolayer. In comparison to the pristine PbH, little difference is observed between them. Evidently, they are robust QSH insulators whose band inversion is not affected by the substrate.
In summary, based on firstprinciples calculations, we have predicted a new class of 2D QSH insulators in PbX monolayers with a giantgap of 1.34 eV, allowing for viable applications at room temperature. This giantgap opening is mainly due to the result of the strong SOC related to the p_{x,y} orbitals of Pb atoms at the Γ point, in sharp contrast to that consisting of the p_{z} orbital as in pristine groupIV ones. The topological characteristic of PbH monolayer is confirmed by the Z_{2} topological order due to sp_{x,y} band inversion and an explicit demonstration of the topological edge states, while the strong SOC enhances nontrivial gaps greatly. Also, these systems maintain their nontrivial topological phase within the certain strain range, indicating their topology is robust against strain. We also propose highdielectricconstant BN as an ideal substrate for the experimental realization of PbX, maintaining its nontrivial topology. These results represent a significant advance in the study of TIs and thus are expected to stimulate further work to synthesize, characterize and utilize PbX monolayers for fundamental exploration in spintronics.
Methods
Firstprinciples calculations were performed by using density functional theory (DFT) methods as implemented in the Vienna ab initio simulation (VASP)^{38,39} package. The projectoraugmentedwave potential, the PerdewBurkeErnzerhof (PBE) exchangecorrelation functional^{40,41}, was used to to treat the ionelectron interactions. The energy cutoff of the plane waves was set to 500 eV with the energy precision of 10^{−6 }eV. The Brillouin zone was sampled by using a 21 × 21 × 1 Gammacentered Monkhorst–Pack grid. The vacuum space was set to 20 Å to minimize artificial interactions between neighboring slabs. SOC was included by a second variational procedure on a fully selfconsistent basis. With the optimized structures, the more sophisticated HSE06 hybrid functional^{26} was used to check the corresponding results of the systems. The phonon spectra were calculated using a supercell approach within the PHONON code^{42}.
Additional Information
How to cite this article: Zhao, H. et al. Unexpected GiantGap Quantum Spin Hall Insulator in Chemically Decorated Plumbene Monolayer. Sci. Rep. 6, 20152; doi: 10.1038/srep20152 (2016).
References
Yan, B. & Zhang, S. C. Topological Materials. Rep. Prog. Phys. 75, 096501–096523 (2012).
Moore, J. E. Majorana’s Wires. Nature nanotechnology. 8, 194–198 (2013).
Hasan, M. Z. & Kane, C. L. Colloquium: Topological Insulators. Rev. Mod. Phys. 82, 3045–3067 (2010).
Qi, X. L. & Zhang, S. C. Topological Insulators and Superconductors. Rev. Mod. Phys. 83, 1057–1110 (2011).
Kane, C. L. & Mele, E. J. Quantum Spin Hall Effect in Graphene. Phys. Rev. Lett. 95, 226801 (2005).
Kane, C. L. & Mele, E. J. Z2 Topological Order and the Quantum Spin Hall Effect. Phys. Rev. Lett. 95, 146802 (2005).
Bernevig, B. A., Hughes, T. L. & Zhang, S. C. Quantum Spin Hall Effect and Topological Phase Transition in HgTe Quantum Wells. Science. 314, 1757–1761 (2006).
König, M. et al. Quantum Spin Hall Insulator State in HgTe Quantum Wells. Science. 318, 766–770 (2007).
Du, L., Knez, I., Sullivan, G. & Du, R. R. Robust Helical Edge Transport in Gated InAs/GaSb Bilayers. Phys. Rev. Lett. 114, 096802 (2015).
Liu, C., Hughes, T. L., Qi, X. L., Wang, K. & Zhang, S. C. Quantum Spin Hall Effect in Inverted TypeII Semiconductors. Phys. Rev. Lett. 100, 236601 (2008).
Bernevig, B. A., Hughes, T. L. & Zhang, S. C. Quantum Spin Hall Effect and Topological Phase Transition in HgTe Quantum Wells. Science 314, 1757–1761 (2006).
Fu, L., Kane, C. L. & Mele, E. J. Topological Insulators in Three Dimensions. Phys. Rev. Lett. 98, 106803–106806 (2007).
Zhang, H. et al. Topological Insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a Single Dirac Cone on the Surface. Nat. Phys. 5, 438–442 (2009).
Chen, Y. L. et al. Experimental Realization of a ThreeDimensional Topological Insulator, Bi2Te3 . Science. 325, 178–181 (2009).
Soluyanov, A. A. & Vanderbilt, D. Computing Topological Invariants Without Inversion Symmetry. Phys. Rev. B. 83, 235401–235410 (2011).
Si, C. et al. Functionalized Germanene as a Prototype of Largegap Twodimensional Topological Insulators. Phys. Rev. B. 89, 115429–115433 (2014).
Xu, Y. et al. LargeGap Quantum Spin Hall Insulators in Tin Films. Phys. Rev. Lett. 111, 136804–136815 (2013).
Rivero, P., Yan, J. A., GarcíaSuárez, V. M., Ferrer, J. & BarrazaLopez, S. Stability and Properties of Highbuckled Twodimensional Tin and Lead. Phys. Rev. B 90, 241408(R) (2014).
Jin, K. H. & Jhi, S. H. Quantum Anomalous Hall and Quantum SpinHall Phases in Flattened Bi and Sb Bilayers. Sci. Rep. 5, 8426–8432 (2015).
Zhou, M. et al. Formation of Quantum Spin Hall State on Si Surface and Energy Gap Scaling with Strength of Spin Orbit Coupling. Sci. Rep. 4, 7102–7107 (2014).
Zhou, M. et al. Epitaxial Growth of Largegap Quantum Spin Hall Insulator on Semiconductor Surface. PNAS 111, 14378–14381 (2014).
Zhang, R. W., Zhang, C. W., Ji, W. X., Li, S. S., Hu, S. J., Yan, S. S., Li, P., Wang, P. J. & Li, F. Ethynylfunctionalized Stanene Film: a Promising Candidate as Largegap Quantum Spin Hall Insulator. New J. Phys. 17, 083036 (2015).
Pumera, M. & Wonga, C. H. A. Graphane and hydrogenated graphene. Chem. Soc. Rev. 42, 5987–5995 (2013).
Sofo, J. O., Chaudhari, A. S. & Barber, G. D. Graphane: A Twodimensional Hydrocarbon. Phy. Rev. B, 75, 153401 (2007).
Tsai, W. F. et al. Gated Silicene as a Tunable Source of Nearly 100% SpinPolarized Electrons. Nat. Commun. 4, 1500 (2013).
Heyd, J., Scuseria, G. E. & Ernzerhof, M. Hybrid Functionals Based on a Screened Coulomb Potential. J. Chem. Phys. 118, 8207–8215 (2003).
Mostofi, A. A. et al. Wannier 90: A Tool for Obtaining MaximallyLocalised Wannier Functions. Comput. Phys. Commun. 178, 685–699 (2008).
Sancho, M. P. L., Sancho, J. M. L. & Rubio, J. Quick Iterative Scheme for the Calculation of Transfer Matrices: Application to Mo (100). J. Phys. F: Met. Phys. 15, 851–858 (1985).
Fu, L. & Kane, C. L. Topological Insulators with Inversion Symmetry. Phys. Rev. B. 76, 045302–045318 (2007).
Castro Neto, A. H. & Guinea, F. ImpurityInduced SpinOrbit Coupling in Graphene. Phys. Rev. Lett. 103, 026804 (2009).
Guo, Y. et al. Superconductivity Modulated by Quantum Size Effects. Science 306, 1915–1917 (2004).
Elias, D. C. et al. Control of Graphene’s Properties by Reversible Hydrogenation: Evidence for Graphane. Science 323, 610–613 (2009).
Bianco, E. et al. Stability and Exfoliation of Germanane: a Germanium Graphane Analogue. ACS Nano 7, 4414–4421 (2013).
Britnell, L. et al. FieldEffect Tunneling Transistor Based on Vertical Graphene Heterostructures. Science 335, 947–950 (2012).
Ju, L. et al. Photoinduced Doping in Heterostructures of Graphene and Boron Nitride. Nat. Nanotechnol. 9, 348–352 (2014).
Klimeš, J., Bowler, D. R. & Michaelides, A. Chemical Accuracy for the Van der Waals Density Functional. J. Phys. Condens. Matter. 22, 022201 (2010).
Klimeš, J., Bowler, D. R. & Michaelides, A. Van der Waals Density Functionals Applied to Solids. Phys. Rev. B. 83, 195131 (2011).
Kresse, G. & Furthmüller, J. Efficient Iterative Schemes for ab initio Totalenergy Calculations Using a Planewave Basis Set. Phys. Rev. B. 54, 11169 (1996).
Kresse, G. & Furthmüller, J. Efficiency of abinitio Total Energy Calculations for Metals and Semiconductors Using a Planewave Basis Set. Comput. Mater. Sci. 6, 15–50 (1996).
Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 77, 3865 (1996).
Blöchl, P. E. Projector Augmentedwave Method. Phys. Rev. B. 50, 17953 (1994).
Parlinski, K., Li, Z. Q. & Kawazoe, Y. FirstPrinciples Determination of the Soft Mode in Cubic ZrO2 . Phys. Rev. Lett. 78, 4063−4066 (1997).
Acknowledgements
This work was supported by the National Natural Science Foundation of China (Grant No. 11274143, 11434006, 61172028 and 11304121) and Research Fund for the Doctoral Program of University of Jinan (Grant no. XBS1433).
Author information
Affiliations
Contributions
H.Z. and C.Z. conceived the study and wrote the manuscript. R.Z. and S.L. performed the firstprinciples calculations. W.J. calculated the phonon spectrum. P.L. and B.Z. prepared Figures 1,2–3, S.Y. and P.W. prepared Figures 4–6. All authors read and approved the final manuscript.
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Electronic supplementary material
Rights and permissions
This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/
About this article
Cite this article
Zhao, H., Zhang, Cw., Ji, Wx. et al. Unexpected GiantGap Quantum Spin Hall Insulator in Chemically Decorated Plumbene Monolayer. Sci Rep 6, 20152 (2016). https://doi.org/10.1038/srep20152
Received:
Accepted:
Published:
Further reading

Structural and electronic properties of twodimensional hydrogenated Xenes
Journal of Physics: Condensed Matter (2020)

2D OPTl monolayer: a robust large bandgap topological insulator
Journal of Physics D: Applied Physics (2020)

Thickness of elemental and binary single atomic monolayers
Nanoscale Horizons (2020)

Spinorbit couplinginduced band inversion and spin Chern insulator phase in plumbene and stanene
Current Applied Physics (2020)

Quantum spin Hall effect, thermoelectric performance, and optical properties of XBi (X = Sc, Y) monolayers
Physica E: Lowdimensional Systems and Nanostructures (2020)
Comments
By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.