Abstract
Adiabatic state engineering is a powerful technique in quantum information and quantum control. However, its performance is limited by the adiabatic theorem of quantum mechanics. In this scenario, shortcuts to adiabaticity, such as provided by the superadiabatic theory, constitute a valuable tool to speed up the adiabatic quantum behavior. Here, we propose a superadiabatic route to implement universal quantum computation. Our method is based on the realization of piecewise controlled superadiabatic evolutions. Remarkably, they can be obtained by simple timeindependent counterdiabatic Hamiltonians. In particular, we discuss the implementation of fast rotation gates and arbitrary nqubit controlled gates, which can be used to design different sets of universal quantum gates. Concerning the energy cost of the superadiabatic implementation, we show that it is dictated by the quantum speed limit, providing an upper bound for the corresponding adiabatic counterparts.
Introduction
Quantum adiabatic processes are a powerful strategy to implement quantum state engineering, which aims at manipulating a quantum system to attain a target state at a designed time T. In the adiabatic scenario, the quantum system evolves under a sufficiently slowlyvarying Hamiltonian, which prevents changes in the populations of the energy eigenlevels. In particular, if the system is prepared in an eigenstate of the Hamiltonian H at a time t = 0, it will evolve to the corresponding instantaneous eigenstate at later times. This transitionless evolution is ensured by the adiabatic theorem, which is one of the oldest and most explored tools in quantum mechanics^{1,2,3}. The huge amount of applications of the adiabatic behavior has motivated renewed interest in the adiabatic theorem, which has implied in its rigorous formulation^{4,5,6,7,8,9,10} as well as in new bounds for adiabaticity^{11,12,13}. In quantum information processing, the adiabatic theorem is the basis for the methodology of adiabatic quantum computation (AQC)^{14}, which has been originally proposed as an approach for the solution of hard combinatorial search problems. More generally, AQC has been proved to be universal for quantum computing, being equivalent to the standard circuit model of quantum computation up to polynomial resourceoverhead^{15}. Moreover, it is a physically appealing approach, with a number of experimental implementations in distinct architectures, e.g., nuclear magnetic resonance^{16,17,18}, ion traps^{19} and superconducting flux quantum bits (qubits) through the DWave quantum annealer^{20,21,22}.
Recently, the circuit model has been directly connected with AQC via hybrid approaches^{23,24}. Then, an adiabatic circuit can be designed based on the adiabatic realization of quantum gates, which allows for the translation of the quantum circuit to the AQC framework with no further resources required. In particular, it is possible to implement universal sets of quantum gates through controlled adiabatic evolutions (CAE)^{24}. In turn, CAE are used to perform onequbit and twoqubit gates, allowing for universality through the set of onequbit rotations joint with an entangling twoqubit gate^{25,26}. However, since these processes are ruled by the adiabatic approximation, it turns out that each gate of the adiabatic circuit will be implemented within some fixed probability (for a finite evolution time). Moreover, the time for performing each individual gate will be bounded from below by the adiabatic time condition^{4,5,6,7,8,9,10}. For a recent analysis on adiabatic control of quantum gates and its corresponding nonadiabatic errors, see ref. 27.
In order to resolve the limitations of adiabaticity in the hybrid model, we propose here a general shortcut to CAE through simple timeindependent counterdiabatic assistant Hamiltonians within the framework of the superadiabatic theory^{28,29,30,31}. The physical resources spent by this strategy will be governed by the quantum circuit complexity, but no adiabatic constraint will be required in the individual implementation of the quantum gates. Moreover, the gates will be deterministically implemented with probability one as long as decoherence effects can be avoided. In particular, we discuss the realization of rotation gates and arbitrary nqubit controlled gates, which can be used to design different sets of universal quantum gates. This analog approach allows for fast implementation of individual gates, whose time consumption is only dictated by the quantum speed limit (QSL) (for closed systems, see refs 32, 33, 34, 35). Indeed, the time demanded for each gate will imply in an energy cost, which increases with the speed of the evolution. In this context, by analyzing the energytime complementarity, we will show that the QSL provides an energy cost for superadiabatic evolutions that upper bounds the cost of adiabatic implementations.
Adiabatic quantum circuits
Let us begin by discussing the design of adiabatic quantum circuits as introduced by Hen^{24} through the implementation of quantum gates via CAE.
Controlled adiabatic evolution
In order to define quantum gates through CAE, we will introduce a discrete bipartite system associated with a Hilbert space . The system is composed by a target subsystem and an auxiliary subsystem , whose individual Hilbert spaces and have dimensions and , respectively. The dynamics of will be governed by a Hamiltonian in the form^{24}
where f(0) = g(1) = 1, g(0) = f(1) = 0 and {P_{k}} denotes a complete set of orthogonal projectors over , so that they satisfy P_{k}P_{m} = δ_{km}P_{k} and ∑_{k}P_{k} = 1. Alternatively, we can write Eq. (1) as
with denoting a Hamiltonian that acts on . Suppose now that we prepare the system in the initial state , where is an arbitrary state of and is the (nondegenerate) ground state of H^{(b)}. Then is the ground state of the initial Hamiltonian ⊗H^{(b)}. By applying the adiabatic theorem^{3,36}, a sufficiently slowingvarying evolution of H(t) will drive the system (up to a phase) to the final state
where is the ground state of ^{24}.
Singlequbit unitaries and controlled twoqubit gates
We can perform a singlequbit unitary transformation through a general rotation of an angle ϕ around a direction on the Bloch sphere. In this direction, we begin by preparing the system , taken here as two qubits, in the initial state , where are the computational states of the auxiliary system . Then, we let the system adiabatically evolve driven by the Hamiltonian^{24}
where H_{0}(s) and H_{ϕ}(s) are adiabaticallyevolved Hamiltonians, whose effect will be restricted to the respective subspaces of the projectors , where is a unitary vector on the Bloch sphere associated with and , with {σ_{i}} denoting the set of Pauli matrices. The Hamiltonians are taken as , where ξ ∈ {0, ϕ}, ωħ sets the energy scale (ω > 0), θ_{0} is a constant parameter and s = t/τ denotes a dimensionless (parametrized) time, with τ the total time of evolution. Note then that
By writing the initial state of as , where is an arbitrary (not necessarily known) qubit state, the final state follows from Eq. (3), i.e. . Note that is the ground state of H_{ξ}(s), reading , with ξ ∈ {0, ϕ}. An equivalent form of writing is given by
Hence, we have a probabilistic implementation of the rotated target state for an arbitrary angle ϕ around an arbitrarily chosen axis , with probability . In particular, this probability approximates to one by taking θ_{0} ≈ π.
In order to perform controlled rotations of a qubit by an angle ϕ around a direction , the starting point will be to take the subsystem as a twoqubit system and keeping as a single auxiliary qubit. The Hamiltonian is now chosen to be
which will govern the evolution of the initial composite state , with . From Eq. (3), the final state of the subsystem in the limit θ_{0} → π is now the controlled rotated vector . By combining controlled rotations with the singlequbit unitaries discussed above, it is possible to design universal sets of quantum gates through an adiabatic implementation.
Results
In this Section we present the main results of this work. We start by generalizing the adiabatic implementation of quantum gates proposed in ref. 24 for nqubit controlled gates. Even though nqubit controlled gates can be decomposable into one and twoqubit gates (see, e.g. refs 25,37), this implementation implies in an extended class of adiabatic universal gates, e.g. the set {Toffoli, Hadamard}^{38,39}. Then, we will derive the main result of this work, which is a shortcut for general adiabatic circuits through constant counterdiabatic Hamiltonians, which implies in the possibility of fast analog implementations of quantum circuits. Moreover, we will present an analysis of the quantum speed limit in the context of the energetic cost of the superadiabatic circuit.
Adiabatic ncontrolled gates
In order to implement ncontrolled gates, we define the subsystem as an (n + 1)qubit system, with the first n qubits used as the control register and the last qubit taken as the target register. For the auxiliary system , we keep it as a single qubit. Then, we take the initial state as , with the subsystem described by
where are complex amplitudes, k_{l} ∈ {0, 1}, = {±} and is an arbitrary axis in the Bloch sphere. Here we have written the target qubit in the basis , leaving the remaining qubits of in the computational basis. For simplicity, we will write the states in its decimal representation, i.e.
where N = 2^{n}. Then, we let the system evolve driven by the Hamiltonian
We note that the rotation of the target qubit is expected to be applied if the state of the control system is . Then, if the Hamiltonian is sufficiently slowlyvarying so that we can apply the adiabatic theorem, the system will achieve the final state
where is defined as (ξ ∈ {0, ϕ}). An equivalent form of writing Eq. (10) is
with
Thus, by performing a measurement over the auxiliary qubit, we find the rotated state with probability . As in the previous case of a rotation controlled by one qubit, this probability can be enhanced to one in the limit θ_{0} → π. Indeed, this state implies in a rotation of the target qubit in conditioned by the state of the control register in . An application of this scheme is the adiabatic implementation of the Toffoli gate, which constitutes an unitary operation implementing an X gate over the target qubit if all control qubits are in the state 1, with no effect if any qubit of the control register is in the state 0. This can be easily achieved here by a rotation of an angle π around of the direction x, therefore choosing ϕ = π and , with denoting the eigenstates of σ_{x}.
Shortcut to adiabaticity via counterdiabatic driving
Let us introduce now a shortcut to general CAE through the superadiabatic approach. This will allow for fast piecewise implementation of quantum gates, whose evolution time will not be constrained by the adiabatic theorem. We begin by defining the evolution operator^{30}
which leads an initial state into an evolved state given by
where are the eigenvectors of the adiabatic Hamiltonian. Note that this evolution mimics the adiabatic behavior. The Hamiltonian that guides the evolution of the system is the superadiabatic Hamiltonian, which reads
where the additional term H_{CD}(t) is the counterdiabatic Hamiltonian
Therefore, a superadiabatic implementation of a dynamical evolution involves the knowledge of the eigenstates of the adiabatic Hamiltonian H(t), which limits the direct application of the superadiabatic approach in quantum computation. For instance, by adopting the original AQC approach^{14}, superadiabatic implementations seem prohibitive, since the whole set of eigenlevels of a manybody Hamiltonian is required. In a similar context, counterdiabatic driving protocols based on realizable settings have been investigated for assisted evolutions in quantum critical phenomena^{40,41,42}. Here, as we shall see, the superadiabatic implementation of universal quantum circuits in the hybrid approach can be promptly achieved, since we deal with the eigenspectrum of piecewise Hamiltonians, which act over a few qubits. It is then appealing to formulate a superadiabatic theory to CAE and then to specify it to the implementation of universal sets of quantum gates. Let us begin by establishing the complete set of eigenstates of the Hamiltonian H(t) provided by Eq. (2). To this end, consider the eigenvalue equation to each Hamiltonian H_{k}(t) given by
with . By defining the projectors P_{k} in Eq. (2) as , with and , we can write the complete set of eigenstates of H(t) as
such that . Indeed, from Eq. (2), we have . Note that each projector P_{k} is associated with a Hamiltonian H_{k}. For instance, for the adiabatic implementation of ncontrolled gates, we have defined the Hamiltonian H in Eq. (9) by linking the set with H_{0} and by linking the remaining projector with H_{ϕ}. The next step is to obtain the counterdiabatic Hamiltonian H_{CD}(t) that implements the shortcut to the adiabatic evolution of H(t). In this direction, we use the eigenstates of H(t) as given by Eq. (18). Then, we get
with . Therefore
where and is the counterdiabatic Hamiltonian to be associated with the piecewise adiabatic contribution H_{l}(t) acting over subsystem , which reads
Hence, from Eq. (15), we can implement the shortcut dynamics through the superadiabatic Hamiltonian
where is the piecewise superadiabatic Hamiltonian. Note that the cost of performing superadiabatic evolutions requires the knowledge of the eigenvalues and eigenstates of H_{l}(t). For the implementation of general ncontrolled gates, this is a Hamiltonian acting over a single qubit, which is independent of the circuit complexity. Moreover, we can show that, for an arbitrary ncontrolled quantum gate, the counterdiabatic Hamiltonians (ξ ∈ {0, ϕ}) associated with shortcuts to adiabatic evolutions driven by , with s = t/τ, are timeindependent operators given by
Eq. (23) shows that the implementation of the shortcut can be achieved with a very simple assistant Hamiltonian in the quantum dynamics. Its proof is provided in Section Methods.
Quantum speed limit
It is expected that the shortcut via a counterdiabatic Hamiltonian is faster than the evolution via an adiabatic Hamiltonian, but how much faster can it be? To answer this question, we shall take a lower bound to the time evolution in quantum dynamics as provided by the quantum speed limit (QSL). We will consider a closed quantum system evolving between arbitrary pure states and . Since the evolution is driven by a timedependent superadiabatic Hamiltonian H_{SA}(t), we will take the generalized MargolusLevitin bound^{33} derived by Deffner and Lutz^{35}, which reads
where is the Bures metric for pure states^{26} and
For superadiabatic evolutions, the initial state evolves to , where denotes the instantaneous ground state of the adiabatic Hamiltonian H(t). By using the parametrized time s = t/τ, we can show from Eqs. (24) and (25) that the total time τ that mimics the adiabatic evolution within the superadiabatic approach can be reduced to an arbitrary small value. More specifically, the addition of a counterdiabatic Hamiltonian implies into the QSL bound
with η > 0 and , as shown in Section Methods. Therefore, the QSL bound reduces to
with τ and ω defined by the superadiabatic Hamiltonian H_{SA}(t). This means that the superadiabatic implementation is compatible with an arbitrary reduction of the total time τ, which holds independently of the boundary states and . Naturally, a higher energetic cost is expected to be involved for a smaller evolution time τ. In particular, saturation of Eq. (27) is achieved for either τ → 0 or ω → 0, with both cases implying in τω → 0. Note that this limit is forbidden in the adiabatic regime for finite ω, since the energy gap is proportional to ħω, which implies in an adiabatic time of the order τ_{ad} ∝ 1/ω^{n}, with ^{3,4,7,36}. Hence, Eq. (27) leads to a flexible running time in a superadiabatic implementation, only limited by the energytime complementarity.
The Energetic Cost
Let us show now that time and energy are complementary resources in superadiabatic implementations of quantum evolutions. We shall define the energetic cost associated with a superadiabatic Hamiltonian through
with H_{SA}(t) given by Eq. (22) and the norm provided by the HilbertSchmidt norm . Since H_{SA}(t) is Hermitian, we can write
To derive Eq. (29), we have used that Tr({H(t), H_{CD}(t)}) = 0. This can be obtained by computing the trace in the eigenbasis of H(t) and noticing that the expectation value of H_{CD}(t) taken in an eigenstate of H(t) vanishes, i.e. . In particular, let us define the energetic cost to the adiabatic Hamiltonian as
Then, it follows that the energetic cost Σ(τ) in superadiabatic evolutions supersedes the energetic cost Σ_{0}(τ) for a corresponding adiabatic physical process. In order to evaluate Σ(τ) we adopt the basis of eigenstates of the adiabatic Hamiltonian H(t). By using Eq. (18), this yields
where are the energies of the adiabatic Hamiltonian H_{l}(t) and
In order to analyze the energetic cost as provided by Eq. (30) for superadiabatic qubit rotation gates, we set and (∀l). Moreover, by using Eq. (18), we obtain , which leads to [See Eqs. (34) and (35) in Section Methods]. Hence
We illustrate the behavior of Σ(τ) in Fig. 1, where it is apparent that the energetic cost increases inversely proportional to the total time of evolution. In particular, note also that, for a fixed energetic cost, the optimal choice θ_{0} → π requires a longer evolution. This is because of the fact that, in this case, the final state associated with the auxiliary qubit is orthogonal to its initial state, so it is farther in the Bloch sphere. In the more general case of controlled gates, the analysis is similar as in the case of singlequbit gates. However, we must take into account the number of projectors composing the set {P_{k}}. More specifically, the sum over l in Eq. (30) shall run over 1 to 4, which is the number of projectors over the subsystem . Thus we can show that energetic cost Σ^{CG} to implement controlled gates is .
Discussion and Conclusion
We have proposed a scheme for implementing universal sets of quantum gates within the superadiabatic approach. In particular, we have shown that this can be achieved by applying a timeindependent counterdiabatic Hamiltonian in the auxiliary qubit to induce fast controlled evolutions. Remarkably, this Hamiltonian is universal, holding both for performing singlequbit and ncontrolled qubit gates. Therefore, a shortcut to the adiabatic implementation of quantum gates can be achieved through a rather simple mechanism. In particular, different sets of universal quantum gates can be designed by using essentially the same counterdiabatic Hamiltonian. Moreover, we have shown that the flexibility of the evolution time in a superadiabatic dynamics can be directly traced back from the QSL bound. In this context, the running time is only constrained by the energetic cost of the superadiabatic implementation, within a timeenergy complementarity relationship. Implications of the superadiabatic approach under decoherence and a faulttolerance analysis of superadiabatic circuits are further challenges of immediate interest. In a quantum opensystems scenario, there is a compromise between the time required by adiabaticity and the decoherence time of the quantum device. Therefore, the superadiabatic implementation may provide a direction to obtain an optimal running time for the quantum algorithm while keeping an inherent protection against decoherence. In turn, a basis for such development may be provided by the generalization of the superadiabatic theory for the context of open systems^{43,44,45,46}. Concerning errorprotection, it may also be fruitful the comparison of our approach with nonadiabatic holonomic quantum computation, where nonadiabatic geometric phases are used to perform universal quantum gates (see, e.g. recent proposals in refs 47,48). Moreover, the behavior of correlations such as entanglement may also be an additional relevant resource for superadiabaticity applied to quantum computation. These investigations as well as experimental proposals for superadiabatic circuits are left for future research.
Methods
Timeindependent counterdiabatic Hamiltonians for ncontrolled gates
Let us explicitly design here the superadiabatic implementation of controlled evolutions for piecewise Hamiltonians H_{ξ}(s) as provided by Eqs. (5). To this end, consider the eigenvalue equation
with ξ = {0, ϕ}, where
From Eq. (18), it follows that the eigenstates for the adiabatic Hamiltonian H(s) governing the composite system are given by the sets and associated with the set of eigenvalues and , respectively. By evaluating the eigenvalues of H_{0}(s) and H_{ϕ}(s), we obtain that their spectra are equal, being provided by . Thus, H(s) exhibits doubly degenerate levels, with and associated with levels E^{+} = ωħ and E^{−} = −ωħ, respectively. By using now Eqs. (34) and (35), we obtain , for any i = {±} and ξ = {0, ϕ}. Then, from Eq. (20), we obtain that the counterdiabatic hamiltonian is , which leads to the timeindependent counterdiabatic Hamiltonian given by Eq. (23). The extension to the case of ncontrolled gates can be achieved as follows. From Eq. (18), the eigenstates of H(s) read
where , ε, k = {±} and ξ = {0, ϕ}. By computing the eigenvalues of H(s), we obtain that the spectrum of H(s) is (2N)degenerate, with and associated with the levels E^{+} = ωħ and E^{−} = −ωħ, respectively. By using these results into Eq. (20), we obtain that the counterdiabatic piecewise Hamiltonian is given by Eq. (23). Hence, the implementation any ncontrolled gate is achieved through a timeindependent counterdiabatic Hamiltonian.
Quantum speed limit for superadiabatic evolutions
Let us apply here the QSL bound to superadiabatic evolutions. By using the fact than the evolves in the ground state of H(t) and that H_{SA}(t) is given by Eq. (15), we have
where E_{0}(t) is the instantaneous ground state energy of H(t). Now we use Eq. (16) and the inequality , which yields
By using the parametrized time s = t/τ, we obtain
where and . Since the ground state energy for the adiabatic Hamiltonian H(s) in the case of ncontrolled gates is E_{0}(s) = −ωħ [see Eqs. (5) and (9)], we write η_{1}(s) = ωη(s), with . Moreover, we define χ(s) ≡ η_{2}(s) + η_{3}(s). Then
Let us now analise the term χ(s). First, note that . Then, we use that (see proof in ref. 35), which yields
where we have used the inequality . From the definition of the Bures metric, we have . Hence, , which implies into Eq. (27).
Additional Information
How to cite this article: Santos, A. C. and Sarandy, M. S. Superadiabatic Controlled Evolutions and Universal Quantum Computation. Sci. Rep. 5, 15775; doi: 10.1038/srep15775 (2015).
References
Born, M. & Fock, V. Beweis des adiabatensatzes. Z. Phys. 51, 165 (1928).
Kato, T. On the adiabatic theorem of quantum mechanics. J. Phys. Soc. Jpn. 5, 435 (1950).
Messiah, A. Quantum mechanics. NorthHolland, Amsterdam (1962).
Teufel, S. Adiabatic perturbation theory in quantum dynamics. Lecture Notes in Mathematics 1821, SpringerVerlag, Berlin, Heidelberg, New York (2003).
Ambainis, A. & Regev, O. An elementary proof of the quantum adiabatic theorem. arXiv:quantph/0411152 (2004).
Tong, D. M., Singh, K., Kwek, L. C. & Oh, C. H. Quantitative conditions do not guarantee the validity of the adiabatic approximation. Phys. Rev. Lett. 95, 110407 (2005).
Jansen, S., Ruskai, M.B. & Seiler, R. Bounds for the adiabatic approximation with applications to quantum computation. J. Math. Phys. 48, 102111 (2007).
Amin, M. H. S. Consistency of the adiabatic theorem Phys. Rev. Lett. 102 220401 (2009).
Tong, D. M. Quantitative condition is necessary in guaranteeing the validity of the adiabatic approximation. Phys. Rev. Lett. 104, 120401 (2010).
Cao, H., Guo, Z., Chen, Z. & Wang, W. Quantitative sufficient conditions for adiabatic approximation. Sci China  Phys. Mech. Astron. 56, 1401 (2013).
Tong, D. M., Singh, K., Kwek, L. C. & Oh, C. H. Sufficiency criterion for the validity of the adiabatic approximation. Phys. Rev. Lett. 98, 150402 (2007).
Yu, B., Cao, H., Guo, Z. & Wang, W. Computable upper bounds for the adiabatic approximation errors. Sci China  Phys. Mech. Astron. 57, 2031 (2014).
Wang, W., Cao, H., Lu, L. & Yu, B. An upper bound for the generalized adiabatic approximation error with a superposition initial state. Sci China  Phys. Mech. Astron. 58, 030001 (2015).
Farhi, E. et al. A quantum adiabatic evolution algorithm applied to random instances of an NPcomplete problem. Science 292, 472 (2001).
Aharonov, D. et al. Adiabatic quantum computation is equivalent to standard quantum computation. SIAM Journal of Computing 37, 166 (2007).
Steffen, M., Van Dam, W., Hogg, T., Breyta, G. & Chuang, I. Experimental implementation of an adiabatic quantum optimization algorithm. Phys. Rev. Lett. 90, 067903 (2003).
Peng, X. et al. Quantum adiabatic algorithm for factorization and its experimental implementation. Phys. Rev. Lett. 101, 220405 (2008).
Long, Y., Feng, G., Tang, Y., Qin, W. & Long, G. NMR realization of adiabatic quantum algorithms for the modified Simon problem. Phys. Rev. A 88, 012306 (2013).
Richerme, P. et al. Experimental performance of a quantum simulator: optimizing adiabatic evolution and identifying manybody ground states. Phys. Rev. A 88, 012334 (2013).
Johnson, M. W. et al. Quantum annealing with manufactured spins. Nature 473, 194 (2011).
Boixo, S., Albash, T., Spedalieri, F. M., Chancellor, N. & Lidar, D. A. Experimental signature of programmable quantum annealing. Nature Comm. 4, 3067 (2013).
Boixo, S. et al. Evidence for quantum annealing with more than one hundred qubits. Nature Physics 10, 218 (2014).
Bacon, D. & Flammia, S. T. Adiabatic gate teleportation. Phys. Rev. Lett. 103, 120504 (2009).
Hen, I. Quantum gates with controlled adiabatic evolutions. Phys Rev A 91, 022309 (2015).
Barenco, A. et al. Elementary gates for quantum computation. Phys. Rev. A 52, 3457 (1995).
Nielsen, M. A. & Chuang, I. L. Quantum computation and quantum information. Cambridge University Press, Cambridge (2000).
Martinis, J. M. & Geller, M. R. Fast adiabatic qubit gates using only σz control. Phys. Rev. A 90, 022307 (2014).
Demirplak, M. & Rice, S. A. Adiabatic population transfer with control fields. J. Phys. Chem. A 107, 9937 (2003).
Demirplak, M. & Rice, S. A. Assisted adiabatic passage revisited. J. Phys. Chem. B 109, 6838 (2005).
Berry, M. V. Transitionless quantum driving. J. Phys. A: Math. Theor. 42, 365303 (2009).
Torrontegui, E. et al. Shortcuts to adiabaticity Adv. Atom. Mol. Opt. Phys. 62, 117 (2013).
Mandelstam, L. & Tamm, I. G. The uncertainty relation between energy and time in nonrelativistic quantum mechanics. J. Phys. (Moscow) 9, 249 (1945).
Margolus, N. & Levitin, L. B. The maximum speed of dynamical evolution. Physica D 120, 188 (1998).
Giovannetti, V., Lloyd, S. & Maccone, L. Quantum limits to dynamical evolution Phys. Rev. A 67, 052109 (2003).
Deffner, S. & Lutz, E. Energytime uncertainty relation for driven quantum systems. J. Phys. A: Math. Theor. 46, 335302 (2013).
Sarandy, M. S., Wu, L.A. & Lidar, D. Consistency of the adiabatic theorem Quantum Inf. Process. 3, 331 (2004).
Liu, Y., Long, G. L. & Sun, Y. Analytic onebit and CNOT gate constructions of general nqubit controlled gates. Int. J. Quantum Inform. 6, 447 (2008).
Shi Y. Y. Both Toffoli and ControlledNOT need little help to do universal quantum computation. Quantum Inf. Comp. 3, 84 (2003).
Aharonov, D. A simple proof that Toffoli and Hadamard are quantum universal. arXiv:quantph/0301040 (2003).
del Campo, A., Rams, M. M. & Zurek, W. H. Assisted finiterate adiabatic passage across a quantum critical point: exact solution for the quantum Ising model. Phys. Rev. Lett. 109, 115703 (2012).
del Campo, A. Shortcuts to adiabaticity by counterdiabatic driving. Phys. Rev. Lett. 111, 100502 (2013).
Saberi, H., Opatrny, T., Molmer, K. & del Campo, A. Adiabatic tracking of quantum manybody dynamics. Phys. Rev. A 90, 060301 (R) (2014).
Jing, J., Wu, L.A., Sarandy, M. S. & Muga, J. G. Inverse engineering control in open quantum systems. Phys. Rev. A 88, 053422 (2013).
Vacanti, G. et al. Transitionless quantum driving in open quantum systems. New J. Phys. 16, 053017 (2014).
Jing, J. & Wu, L.A. Overview of quantum memory protection and adiabaticity induction by fastsignal control. Science Bull. 60, 328 (2015).
Shi, X., Wei, L. & Oh, C. H. Quantum computation with surfacestate electrons by rapid population passages. Sci China  Phys. Mech. Astron. 57, 1718 (2014).
Feng, G., Xu, G. & Long, G. Experimental realization of nonadiabatic holonomic quantum computation. Phys. Rev. Lett. 110, 190501 (2013).
Xu, G. & Long, G. Universal nonadiabatic geometric gates in twoqubit decoherencefree subspaces. Sci. Rep. 4, 6814 (2014).
Acknowledgements
AcknowledgementsWe are grateful to Itay Hen and Adolfo del Campo for useful discussions. M. S. S. thanks Daniel Lidar for his hospitality at the University of Southern California. We acknowledge financial support from the Brazilian agencies CNPq, CAPES and FAPERJ. This work has been performed as part of the Brazilian National Institute of Science and Technology for Quantum Information (INCTIQ).
Author information
Affiliations
Contributions
Both A.C.S. and M.S.S. conceived the main ideas and developed the results. All authors reviewed the manuscript.
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Rights and permissions
This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/
About this article
Cite this article
Santos, A., Sarandy, M. Superadiabatic Controlled Evolutions and Universal Quantum Computation. Sci Rep 5, 15775 (2015). https://doi.org/10.1038/srep15775
Received:
Accepted:
Published:
Further reading

Quantum speed limit for a threequbit system in spinchain environment with multisite interaction
Physics Letters A (2020)

Speed limit for open quantum systems
New Journal of Physics (2019)

Rapid counterdiabatic sweeps in lattice gauge adiabatic quantum computing
New Journal of Physics (2019)

Hamiltonian Engineering for Adiabatic Quantum Computation: Lessons from Shortcuts to Adiabaticity
Journal of the Physical Society of Japan (2019)

Experimental Realization of a Fast Controlled Z Gate via a Shortcut to Adiabaticity
Physical Review Applied (2019)
Comments
By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.