Abstract
Hamiltonian engineering is an important approach for quantum information processing, when appropriate materials do not exist in nature or are unstable. So far there is no stable material for the Kitaev spin Hamiltonian with anisotropic interactions on a honeycomb lattice, which plays a crucial role in the realization of both Abelian and nonAbelian anyons. Here, we show two methods to dynamically realize the Kitaev spin Hamiltonian from the conventional Heisenberg spin Hamiltonian using pulsecontrol techniques based on the BakerCampbellHausdorff (BCH) formula. In the first method, the Heisenberg interaction is changed into Ising interactions in the first process of the pulse sequence. In the next process of the first method, we transform them to a desirable anisotropic Kitaev spin Hamiltonian. In the second more efficient method, we show that if we carefully design twodimensional pulses that vary depending on the qubit location, we can obtain the desired Hamiltonian in only one step of applying the BCH formula. As an example, we apply our methods to spin qubits based on quantum dots, in which the effects of both the spinorbit interaction and the hyperfine interaction are estimated.
Introduction
Topological quantum computation has attracted considerable interest due to its robustness to local perturbations^{1}. Anyons, which obey different statistics from bosons and fermions, are also of fundamental interest in physics^{2}. Kitaev^{3} provided an exactlysolvable model of a spin1/2 system on a honeycomb lattice with potential links to topological quantum computation, for both Abelian and nonAbelian anyons. The Kitaev Hamiltonian is given by an anisotropic spin model on a 2D honeycomb lattice
where , and are the Pauli spin operators and the interaction type (, and links) depends on the direction of the bond between the two sites (Fig. 1). The model in Eq. (1) can be mapped to free Majorana fermions coupled to a gauge field and has two types of interesting ground states, the socalled phase and phase , depending on the relative magnitude of , and . The region , where ( = 1,2,3) refers to ,,, is the gapless phase in which nonAbelian anyons appear and the other region is the gapped phase , where Abelian anyon statistics is expected. In the phase, an additional external magnetic field opens an energy gap. This Kitaev model has opened a new possibility of realizing anyon based on spin systems. However, it is not easy to find materials that have such anisotropic spinspin interactions.
Even if we can find a possible material for realizing a desired Hamiltonian, we have to integrate and fabricate it by attaching many electrodes and probes to confirm whether it is sufficiently controllable^{4,5}. Regarding artificial realizations of the Kitaev Hamiltonian, theoretical proposals have been made using optical lattices^{6,7} and superconducting qubits^{8}. In Ref. [You]=>[8], You et al. used different qubitqubit interactions depending on the coupling direction. Here, we consider how to generate the Kitaev Hamiltonian starting from the Heisenberg Hamiltonian.
The Heisenberg Hamiltonian describes twobody interactions in many magnetic materials and artificial systems such as cold atoms^{6}, semiconductor quantum dot (QD) systems^{9,10,11,12,13,14,15}, donor systems^{16,17,18,19} and nitrogenvacancy (NV) centers^{20,21,22}. The Heisenberg Hamiltonian is given by
where only the nearestneighbor interactions are assumed here. The problem to be solved is to find a way to derive the Kitaev Hamiltonian Eq. (1) from the Heisenberg Hamiltonian of Eq. (2). The difficulty is to derive the anisotropic interaction of the Kitaev Hamiltonian from the uniform interaction of the Heisenberg Hamiltonian. For example, although the tunneling couplings of the spin qubits based on QDs can be varied uniformly by attaching gate electrodes, we cannot control the anisotropy of the interactions by only changing the strength of the tunneling couplings^{23}. The purpose of this paper is to propose two methods to dynamically derive the Kitaev Hamiltonian from the Heisenberg Hamiltonian.
The two methods provided here are based on pulsecontrol technique using the BakerCampbellHausdorff (BCH) formula between the Heisenberg Hamiltonian and the transformed Hamiltonians. These transformed Hamiltonians are produced by applying appropriate pulse sequences to the Heisenberg Hamiltonian. The BCH formula is useful for creating desirable effective Hamiltonians^{24}. However, because unwanted terms are generated by the BCH formula, it is desirable to reduce the number of times the BCH formula is applied to different transformed Hamiltonian.
In the first method provided here, which we call the direct method, the Heisenberg interaction is changed into , and Ising couplings, by using the corresponding transformed Hamiltonians in the first process. In the second process of the direct method, three other transformed Hamiltonians are used to change the Ising couplings into the desired , and links. When we count the number of the steps required to obtain the different transformed Hamiltonians, the direct method requires six steps to obtain the Kitaev spin Hamiltonian. In the second method, which we call the efficient method, we show that if we carefully design twodimensional (2D) pulses that vary depending on the qubit location, we can obtain the desired Hamiltonian in only one step where one transformed Hamiltonian is used.
Because the engineered Hamiltonian is effective only for a finite time interval, the dynamical approach requires a refresh process in which the same pulse sequence for generating the Kitaev Hamiltonian is carried out. The idea of repeating the production process is very common in conventional digital computers, such as dynamic random access memory (DRAM), which essentially is a big capacitor and the amount of electric charge is lost over time^{25}. We consider the refresh overhead of the dynamical methods and compare the two proposed methods quantitatively.
As a concrete example of the application of our methods, we consider the spin qubits based on QDs. In general, QDs have both spinorbit interactions^{26,27,28} and hyperfine interactions^{29,30,31}. Therefore, we will discuss the effects of these interactions, other than the unwanted terms derived from the BCH formula, on the topological Hamiltonian, focusing on the gapped phase (phase ).
Results
Dynamical creation of the Kitaev spin Hamiltonian from the Heisenberg model
Now, we explain how to derive Eq. (1) from the Heisenberg Hamiltonian Eq. (2). The “creation” of Eq. (1) is carried out by combining with a transformed Hamiltonian , which is produced by applying a customized pulse sequence to , like in nuclear magnetic resonance (NMR), by a repeated application of the BCH formula. Concretely, the target Hamiltonian is approximately obtained by , such as
when . In the exponent of the right side of this equations, the terms beyond the first term are the unwanted ones. The transformed Hamiltonian is produced by using rotations of the Pauli operators, , and . These rotations are obtained by the operations given by
and . We have similar equations for the rotations of the and operators. In the following, we show that the first method (direct method) uses Eq. (3) six times, but the second method (efficient method) uses it only once.
Direct method
The direct way to convert Eq. (2) to Eq. (1) requires six steps, as shown in Fig. 2. The first process is to create the three Ising Hamiltonians, , , , from Eq. ((2)) ==> (2) as shown in Figs. 2(a,c,e). The generated Ising Hamiltonians are described by
where () is a rotated Hamiltonian, in which shows pulse rotations around the axes on the lattice sites of Figs. 2(a,c,e). The next process is to eliminate unnecessary Ising interactions, such as
where is obtained by applying a pulse operation depending on the links in Figs. 2(b,d,f).
Thus, the Kitaev Hamiltonian is dynamically obtained by
(See also Sec. I of the supplementary information). Note that parts of the Kitaev Hamiltonian do not commute, , . Therefore, the unwanted terms emerge even in the process Eq.((7)) ==> (7) of combining the , and Ising couplings. In the following, we show a better method in which the , and Ising couplings are generated in a single process.
Efficient method.
Because the coherence time is limited, a generation method using less time can be regarded as more efficient. When we apply rotation pulses more compactly, the Kitaev Hamiltonian is produced more efficiently from . Fig. 3 shows the distributions of the rotation pulses by which the BCH formula is used only once, such that
with . The link of the colored honeycomb is produced by applying a rotation around the axis and that around the axis on both sides of the link. Similarly, the ()link is produced by a rotation around the ()axis and around the ()axis on both sides of the link (see also Sec. II of the supplementary information).
Refresh overhead
If denotes the time of a singlequbit rotation, it takes and to produce the rotations and , respectively. Similar to the conventional DRAM, here we define the refresh overhead as the effectiveness of the refresh of the quantum state:
The refresh overhead of the efficient method presented above is
and that of the direct method shown previously is
for . Thus, the efficient method is three times more efficient than the direct method.
Fidelity
Let us numerically estimate the improvement of the efficient method by calculating a timedependent gate fidelity^{32}. The timedependent gate fidelity is defined by
where denotes the evolution operator of the pulsed system. The gate fidelity shows how well the transformed Hamiltonian evolves compared with . For the direct method, is given by
with , for and . Note that and transform into the rotated ones shown in Figs. 2(a,c,e) and (b,d,f), respectively. In contrast, for the efficient pulse arrangement, is expressed by
Thus, the evolution operator Eq. (14) of the efficient method is much simpler than that of the direct method Eq. (13). Here we consider the general case in which the spinorbit interaction and the hyperfine interaction are added to the Heisenberg Hamiltonian Eq. (2), assuming the spin qubits based on QDs. The spinorbit interaction is expressed by
where and the magnitudes of the spinorbit vectors and are 10^{−2} smaller^{28} than . The hyperfine interaction is given by the fluctuation of the field^{30}, such as . We treat the hyperfine field as a static quantity because the evolution of the hyperfine field is ~10 s and much slower than the timescale of^{11} the pulsecontrol ~100 ns. The total Hamiltonian of this system is . The Chebyshev expansion method is used for calculating the timedependent behavior until its 6thorder term^{33}. We have considered several parameter regions such as (i) , and , (ii) , and and (iii) , and (). Figure 4 shows for the numerical results for qubits (two honeycomb lattices) for J_{x} = J_{y} = 0.3 J_{z}, d_{α} = 0.1 and δh_{α} = 0.1. In various parameter regions, the overlap with the Kitaev Hamiltonian is excellent when using the pulsecontrolled method. We also find that iterating the same BCH formula^{34} greatly increases the gate fidelity, which is similar to the bangbang control^{35}.
Timedependent Eigenvalue
In order to directly see the effects of the unwanted terms, spinorbit terms and hyperfine terms, we calculate the timedependent eigenvalues of the effective Hamiltonian , of the efficient method. Because of limited computational resources, we show the numerical results for and . We find that an energy gap opens up in the region. The energy gap becomes narrow for , compared for , because of finitesize effects. When we compare Fig. 5(d) with Fig. 5(c), we find that the spinorbit terms and the hyperfine terms decrease the energy gap for large systems. In many systems, we cannot neglect additional interactions other than the Heisenberg interactions. Here, the spinorbit and the hyperfine interactions represent such additional interactions. The results of Figs. 5(b,d) show that, although the energy gap between the ground state and the excited state of Kitaev Hamiltonian is modified by those interactions, the energy gap is detectable as long as the effect of the additional interactions is small.
Toric code Hamiltonian
The unperturbed Hamiltonian of the phase is given by , whose ground state is a degenerate dimer state. Then, acts as a perturbation and generates the toric code Hamiltonian^{3,36}. Comparing the unwanted terms , the spinorbit terms and the hyperfine terms, with the effective toric code Hamiltonian in Ref.^{3} implies the constraints
where and (see Sec. VI of the supplementary information). From these estimates, in order to realize the topological quantum computation, both the spinorbit and the hyperfine interactions should be as small as possible.
Effects of errors in rotations.
Let us consider the effects of errors in rotations. In Eq. (4), when there is a pulse error in . These rotations are carried out by the operations:
We have similar equations for the and components. When we apply these equations with to the Heisenberg Hamiltonian , we have
Thus, the unwanted terms from the pulse errors are counted in order of . It is considered that these pulse errors can be reduced by using the conventional composite pulse method developed^{37,38} in NMR.
Discussion
Because our methods use many singlequbit rotations, a short is important such that all the operations can be carried out during the coherence time of the system. For example, when 1 ns, the efficient method requires a time of 4 ns and the direct method requires a time of 24 ns. In this case, the coherence time should be longer than at least 24 ns for the realization of both methods. As an example, we consider the spinqubit based on QDs, in which the coherence time is estimated by the dephasing time. When the dephasing time is 10 ns as in Ref. [11], only the efficient method is applicable. When the dephasing time is 100 ns as in Ref. [12], both methods can be applied.
Next, let us discuss a measurement process of topological quantum computation in spin qubits. The toric code and the surface code are based on the stabilizer formalism^{39,40} where desired quantum states are obtained by stabilizer measurements. These measurements can be carried out using conventional spinqubit operations by manipulating the Heisenberg model with appropriate magnetic fields. However, because the desired states are not always eigenstates of the Heisenberg Hamiltonian, the desired states are not preserved^{41}. Thus, our proposed methods, which can preserve the desired states of the topological quantum computation, are important after the measurement. Let us estimate the measurement time in more details. In each measurement process of the surface code, four CNOT gates and two Hadamard gates are required^{39}. When each CNOT gate consists^{10} of two s and each requires a time , where is a Heisenberg coupling strength for the measurement, one stabilizer measurement cycle approximately requires a time . Because a short measurement time and a long coherencepreserving time ) are preferable, it is desirable for the coupling strength between qubits to be changeable and therefore is desirable. The coupling of the Heisenberg interaction can be changed by the gate voltage in spinqubit systems based on QDs.^{11,12,13,14}. As an example, eV is obtained, when the voltage difference between two GaAs QDs is less than 10 mV^{11} and we can choose eV and eV. When eV (= 0.0116 K), the period corresponds to the refresh time ns.
Because the fabrication process is not easy in qubits of any type, the variation of the coupling constant cannot be avoided in experiments. In this paper, we have shown the effect of the spinorbit and the hyperfine interactions as examples of the unwanted terms of our methods. Thus, as long as the variation of is small, it can be included as a small perturbation without significant effects on the generation of the Kitaev Hamiltonian and the toric code Hamiltonian.
In summary, we proposed two methods to dynamically generate a Kitaev spin Hamiltonian on a honeycomb lattice from the Heisenberg spin Hamiltonian by using a dynamical approach. We also considered the effects of the unwanted terms of the BCH, the spinorbit interaction and the hyperfine interaction, for spin qubits based on QDs. We clarified that, if these terms are sufficiently small, a dynamic topological quantum computation is available by periodically reproducing the topological Hamiltonian.
Additional Information
How to cite this article: Tanamoto, T. et al. Dynamic creation of a topologicallyordered Hamiltonian using spinpulse control in the Heisenberg model. Sci. Rep. 5, 10076; doi: 10.1038/srep10076 (2015).
Change history
12 January 2016
A correction has been published and is appended to both the HTML and PDF versions of this paper. The error has not been fixed in the paper.
References
Wen, X. G. Quantum Field Theory of Manybody Systems (Oxford University Press: New York, 2004).
Wilczek, F. Fractional Statistics and Anyon Superconductivity (World Scientific: Singapore, 1990).
Kitaev, A. Anyons in an exactly solved model and beyond. Annals of Physics 321, 2–111 (2006).
Manousakis, E. A quantumdot array as model for copperoxide superconductors: A dedicated quantum simulator for the manyfermion problem, J. Low Temp. Phys. 126, 1501–1513 (2002).
Georgescu, I. M., Ashhab, S. & Nori, F. Quantum simulation, Rev. Mod. Phys. 86, 153–185 (2014).
Duan, L. M., Demler, E. & Lukin, M. D. Controlling Spin Exchange Interactions of Ultracold Atoms in Optical Lattices. Phys. Rev. Lett. 91, 090402 (2003).
Aguado, M., Brennen, G. K., Verstraete, F., & Cirac, J. I. Creation, Manipulation and Detection of Abelian and NonAbelian Anyons in Optical Lattices. Phys. Rev. Lett. 101, 260501 (2008).
You, J. Q., Shi, X. F., Hu, X. & Nori, F. Quantum emulation of a spin system with topologically protected ground states using superconducting quantum circuits. Phys. Rev. B. 81, 014505 (2010).
Loss, D. & DiVincenzo, D. P. Quantum computation with quantum dots. Phys. Rev. A. 57, 120 (1998).
Burkard, G., Loss, D., DiVincenzo, D. P. & Smolin, J. A. Physical optimization of quantum error correction circuits. Phys. Rev. B. 60, 11404 (1999).
Petta, J. R. et al. Coherent Manipulation of Coupled Electron Spins in Semiconductor Quantum Dots. Science 309, 2180–2184 (2005).
Maune, B. M. et al. Coherent singlettriplet oscillations in a siliconbased double quantum dot. Nature 481, 344–347 (2012).
Burkard, G., Seelig, G., & Loss, D. Spin interactions and switching in vertically tunnelcoupled quantum dots. Phys. Rev. B. 62, 2581 (2000).
Hu, X., & Das Sarma, S. Hilbertspace structure of a solidstate quantum computer: Twoelectron states of a doublequantumdot artificial molecule. Phys. Rev. A. 61, 062301 (2000).
Ono, K., Austing, D. G., Tokura, Y. & Tarucha S. Current rectification by Pauli exclusion in a weakly coupled double dot system. Science 297, 1313–1317 (2002).
Kane, B. E. A siliconbased nuclear spin quantum computer. Nature 393, 133–137 (1998).
Salfi, J. et al. Spatially resolving valley quantum interference of a donor in silicon, Nature Mater. 13, 605–610 (2014).
Hamid, E. et al. Electrontunneling operation of singledonoratom transistors at elevated temperatures. Phys. Rev. B. 87, 085420 (2013).
Ono, K., Tanamoto, T., & Oguro, T. Pseudosymmetric bias and correct estimation of Coulomb/confinement energy for unintentional quantum dot in channel of metaloxidesemiconductor fieldeffect transistor. Appl. Phys. Lett. 103, 183107 (2013).
Jelezko, F., Gaebel, T., Popa, I., Gruber, A. & Wrachtrup, J. Observation of Coherent Oscillations in a Single Electron Spin. Phys. Rev. Lett. 92, 076401 (2004).
Yao, N. Y., Jiang, L., Gorshkov, A. V., Gong, Z.X., Zhai, A. Robust Quantum State Transfer in Random Unpolarized Spin Chains. Duan, L.M., & Lukin, M.D., Phys. Rev. Lett. 106, 040505 (2011).
Ping, Y., Lovett, B. W. Benjamin, S. C., & Gauger, E.M. Practicality of Spin Chain Wiring in Diamond Quantum Technologies. Phys. Rev. Lett. 110, 100503 (2013).
Tanamoto, T., Liu, Y. X., Hu, X. & Nori, F. Efficient Quantum Circuits for OneWay Quantum Computing. Phys. Rev. Lett. 102, 100501 (2009).
Tong, Q. J., An, J. H., Gong, J., Luo, H. G. & Oh, C. H. Phys. Rev. B 87, 201109(R) (2013).
Keeth, B. & Baker, R. J. DRAM Circuit Design: A Tutorial (John Wiley & Sons, 2001).
Khaetskii, A. V. & Nazarov, Y. V. Spin relaxation in semiconductor quantum dots. Phys. Rev. B. 61,12 639 (2000).
Golovach, V. N., Khaetskii, A. & Loss D. PhononInduced Decay of the Electron Spin in Quantum Dots. Phys. Rev. Lett. 93.016601 (2004).
Baruffa, F., Stano, P. & Fabian, J. Theory of Anisotropic Exchange in Laterally Coupled Quantum Dots. Phys. Rev. Lett. 104, 126401 (2010).
Yao, W., Liu, R. B. & Sham, L. J. Theory of electron spin decoherence by interacting nuclear spins in a quantum dot. Phys. Rev. B 74,195301 (2006).
Cywinski, L. Dephasing of electron spin qubits due to their interaction with nuclei in quantum dots. Acta Phys. Pol. A 119, 576–575 (2011).
Cywinski, L., Witzel W. M. & Das Sarma, S. Phys. Rev. Lett. 102, 057601 (2009).
Becker, D., Tanamoto, T., Hutter, A., Pedrocchi, F. L. & Loss, D. Dynamic generation of topologically protected selfcorrecting quantum memory. Phys. Rev. A 87, 042340 (2013).
Kosloff, R. & TalEzer, H. A direct relaxation method for calculating eigenfunctions and eigenvalues of the Schroedinger equation on a grid. Chem. Phys. Lett. 127, 223–230 (1986).
Tanamoto, T. Implementation of standard quantum errorcorrection codes for solidstate qubits. Phys. Rev. A. 88, 062334 (2013).
Viola, L. & Lloyd, S. Dynamical suppression of decoherence in twostate quantum systems. Phys. Rev. A 58, 2733 (1998).
Kells, G. et al. Topological Degeneracy and Vortex Manipulation in Kitaev’s Honeycomb Model. Phys. Rev. Lett. 101, 240404 (2008).
Ernst, R. R., Bodenhausen, G. & Wokaun, A. Principles of Nuclear Magnetic Resonance in One and Two Dimensions (Oxford University Press, Oxford, 1987).
Koppens, F. H. L. et al. Driven coherent oscillations of a single electron spin in a quantum dot. Nature 442, 766 (2006).
Fowler, A. G., Mariantoni, M., Martinis, J.M. & Cleland, A.N. Surface codes: Towards practical largescale quantum computation. Phys. Rev. A. 86, 032324 (2012).
Bravyi, S. B. & Kitaev, A. Quantum codes on a lattice with boundary. quantph/9811052.
Tanamoto, T., Stojanovic′, V. M., Bruder, C., & Becker, D. Strategy for implementing stabilizerbased codes on solidstate qubits.Phys. Rev. A 87, 052305 (2013).
Acknowledgements
TT would like to thank A. Nishiyama, K. Muraoka, S. Fujita and H. Goto for discussions. YXL is supported by the NSFC under Grant Nos. 61025022, 91321208, the National Basic Research Program of China Grant No. 2014CB921401. FN is partially supported by the RIKEN iTHES Project, MURI Center for Dynamic MagnetoOptics and a GrantinAid for Scientific Research (S).
Author information
Affiliations
Contributions
T.T. carried out all the calculations. All authors contributed to the discussions, the interpretation of the work and the writing of the manuscript.
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Electronic supplementary material
Rights and permissions
This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/
About this article
Cite this article
Tanamoto, T., Ono, K., Liu, Y. et al. Dynamic creation of a topologicallyordered Hamiltonian using spinpulse control in the Heisenberg model. Sci Rep 5, 10076 (2015) doi:10.1038/srep10076
Received
Accepted
Published
DOI
Further reading

Superconducting quantum bits
Chinese Physics B (2018)

Fracton topological order from nearestneighbor twospin interactions and dualities
Physical Review B (2017)

Generation of chiral spin state by quantum simulation
Physical Review B (2016)
Comments
By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.