Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Intentional corrosion-induced reconstruction of defective NiFe layered double hydroxide boosts electrocatalytic nitrate reduction to ammonia

Subjects

Abstract

The electroreduction of nitrate to ammonia is particularly important in mitigating environmental pollution and obtaining value-added products. Although non-toxic and inexpensive iron-based materials are expected to be a promising catalyst for electrochemical nitrate reduction, ensuring their sustained high activity and inhibiting spontaneous corrosion requires the implementation of complex design. Here we report an economical self-corrosion approach that utilizes Ni2+ ions in wastewater to control the formation of NiFe layered double hydroxide active phase on iron surface, resulting in high nitrate conversion (97.2%) and ammonia selectivity (90.3%). Coupling nitrate reduction with acid absorption, the conversion from NO3 to (NH4)2SO4(s) for applications such as acting as fertilizer are achieved. This distinctive ‘waste-to-treasure’ perspective not only challenges the conventional belief that corrosion diminishes active phase but also notably improves catalytic efficiency while harnessing valuable resources from wastewater, offering a practical method for converting nitrate to useful ammonia products.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Comparison of NO3RR performance after corrosion of Fe foam in wastewater with or without Ni2+ ions and schematic of NiFe-LDH-Ov growth on Fe surface.
Fig. 2: NO3-to-NH4+ conversion performance on different cathodes.
Fig. 3: Characterizations analysis.
Fig. 4: Mechanism analysis for enhanced NO3RR.
Fig. 5: In situ Raman analysis.
Fig. 6: Computational fluid dynamics simulation analysis and ammonia product collection.

Similar content being viewed by others

Data availability

The data supporting the findings in this study are available within the paper (and its Supplementary Information).

References

  1. Chen, F. et al. Efficient conversion of low-concentration nitrate sources into ammonia on a Ru-dispersed Cu nanowire electrocatalyst. Nat. Nanotechnol. 17, 759–767 (2022).

    Article  CAS  PubMed  Google Scholar 

  2. Fan, K. et al. Active hydrogen boosts electrochemical nitrate reduction to ammonia. Nat. Commun. 13, 7958 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Han, S. et al. Ultralow overpotential nitrate reduction to ammonia via a three-step relay mechanism. Nat. Catal. 6, 402–414 (2023).

    Article  CAS  Google Scholar 

  4. Xu, H. et al. Electrocatalytic reduction of nitrate-a step towards a sustainable nitrogen cycle. Chem. Soc. Rev. 51, 2710–2758 (2022).

    Article  CAS  PubMed  Google Scholar 

  5. Zhang, S. et al. Fe/Cu diatomic catalysts for electrochemical nitrate reduction to ammonia. Nat. Commun. 14, 3634 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Chen, G. et al. Electrochemical reduction of nitrate to ammonia via direct eight-electron transfer using a copper-molecular solid catalyst. Nat. Energy 5, 605–613 (2020).

    Article  CAS  Google Scholar 

  7. Fang, J. et al. Ampere-level current density ammonia electrochemical synthesis using CuCo nanosheets simulating nitrite reductase bifunctional nature. Nat. Commun. 13, 7899 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Gao, J. et al. Electrochemically selective ammonia extraction from nitrate by coupling electron-and phase-transfer reactions at a three-phase interface. Environ. Sci. Technol. 55, 10684–10694 (2021).

    Article  CAS  PubMed  Google Scholar 

  9. Zheng, W. et al. Self-activated Ni cathode for electrocatalytic nitrate reduction to ammonia: from fundamentals to scale-up for treatment of industrial wastewater. Environ. Sci. Technol. 55, 13231–13243 (2021).

    CAS  PubMed  Google Scholar 

  10. Chen, X. et al. Binderless and oxygen vacancies rich FeNi/graphitized mesoporous carbon/Ni foam for electrocatalytic reduction of nitrate. Environ. Sci. Technol. 54, 13344–13353 (2020).

    Article  CAS  PubMed  Google Scholar 

  11. Wang, K. et al. Sulfur-dopant-promoted electrocatalytic reduction of nitrate by a self-supported iron cathode: selectivity, stability, and underlying mechanism. Appl. Catal. B 319, 121862 (2022).

    Article  CAS  Google Scholar 

  12. Wu, Z. et al. Electrochemical ammonia synthesis via nitrate reduction on Fe single atom catalyst. Nat. Commun. 12, 2870 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Zhang, G. et al. Tandem electrocatalytic nitrate reduction to ammonia on MBenes. Angew. Chem. Int. Ed. 62, e202300054 (2023).

    Article  CAS  Google Scholar 

  14. Zhai, P. et al. Engineering single-atomic ruthenium catalytic sites on defective nickel-iron layered double hydroxide for overall water splitting. Nat. Commun. 12, 4587 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Wu, Z. et al. Corrosion engineering on iron foam toward efficiently electrocatalytic overall water splitting powered by sustainable energy. Adv. Funct. Mater. 31, 2010437 (2021).

    Article  CAS  Google Scholar 

  16. Liu, Y. et al. Corrosion engineering towards efficient oxygen evolution electrodes with stable catalytic activity for over 6,000 hours. Nat. Commun. 9, 2609 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Lang, Z. et al. A corrosion-reconstructed and stabilized economical Fe-based catalyst for oxygen evolution. Nano Res. 16, 2224–2229 (2023).

    Article  CAS  Google Scholar 

  18. Liu, X. et al. Turning waste into treasure: regulating the oxygen corrosion on Fe foam for efficient electrocatalysis. Small 16, 2000663 (2020).

    Article  CAS  Google Scholar 

  19. Deng, J. et al. Generation of atomic hydrogen by Ni-Fe hydroxides: mechanism and activity for hydrodechlorination of trichloroethylene. Water Res. 207, 117802 (2021).

    Article  CAS  PubMed  Google Scholar 

  20. Lv, X. et al. Defective layered double hydroxide nanosheet boosts electrocatalytic hydrodechlorination reaction on supported palladium nanoparticles. ACS ES&T Water 2, 1451–1460 (2022).

    Article  CAS  Google Scholar 

  21. Wang, Y. et al. Unveiling the activity origin of a copper-based electrocatalyst for selective nitrate reduction to ammonia. Angew. Chem. Int. Ed. 59, 5350–5354 (2020).

    Article  CAS  Google Scholar 

  22. Wang, Q. et al. Recent advances in the synthesis and application of layered double hydroxide (LDH) nanosheets. Chem. Rev. 112, 4124–4155 (2012).

    Article  CAS  PubMed  Google Scholar 

  23. Kim, K.-H. et al. Energy-efficient electrochemical ammonia production from dilute nitrate solution. Energy Environ. Sci. 16, 663–672 (2023).

    Article  CAS  Google Scholar 

  24. Li, C. et al. Electrochemical removal of nitrate using a nanosheet structured Co3O4/Ti cathode: effects of temperature, current and pH adjusting. Sep. Purif. Technol. 237, 116485 (2020).

    Article  CAS  Google Scholar 

  25. Su, L. et al. Electrochemical nitrate reduction by using a novel Co3O4/Ti cathode. Water Res. 120, 1–11 (2017).

    Article  PubMed  Google Scholar 

  26. Duan, W. et al. Highly active and durable carbon electrocatalyst for nitrate reduction reaction. Water Res. 161, 126–135 (2019).

    Article  CAS  PubMed  Google Scholar 

  27. Gao, J. et al. Non-precious Co3O4-TiO2/Ti cathode based electrocatalytic nitrate reduction: preparation, performance and mechanism. Appl. Catal. B. 254, 391–402 (2019).

    Article  CAS  Google Scholar 

  28. Zhang, Y. et al. Electrochemical reduction of nitrate via Cu/Ni composite cathode paired with Ir-Ru/Ti anode: high efficiency and N2 selectivity. Electrochim. Acta 291, 151–160 (2018).

    Article  CAS  Google Scholar 

  29. Li, M. et al. Efficient electrochemical reduction of nitrate to nitrogen using Ti/IrO2–Pt anode and different cathodes. Electrochim. Acta 54, 4600–4606 (2009).

    Article  CAS  Google Scholar 

  30. Li, Y. et al. Development of a mechanically flexible 2D-MXene membrane cathode for selective electrochemical reduction of nitrate to N2: mechanisms and implications. Environ. Sci. Technol. 55, 10695–10703 (2021).

    Article  CAS  PubMed  Google Scholar 

  31. Ma, J. et al. Electrochemical reduction of nitrate in a catalytic carbon membrane nano-reactor. Water Res. 208, 117862 (2022).

    Article  CAS  PubMed  Google Scholar 

  32. Cerrón-Calle, G. A. et al. Highly reactive Cu-Pt bimetallic 3D-electrocatalyst for selective nitrate reduction to ammonia. Appl. Catal. B 302, 120844 (2022).

    Article  Google Scholar 

  33. Zhang, Z. et al. Electrochemical-catalytic reduction of nitrate over Pd–Cu/γAl2O3 catalyst in cathode chamber: enhanced removal efficiency and N2 selectivity. Chem. Eng. J. 290, 201–208 (2016).

    Article  CAS  Google Scholar 

  34. Kang, J. et al. Realizing two-electron transfer in Ni(OH)2 nanosheets for energy storage. J. Am. Chem. Soc. 144, 8969–8976 (2022).

    Article  CAS  PubMed  Google Scholar 

  35. Wu, Y. et al. Evolution of cationic vacancy defects: a motif for surface restructuration of OER precatalyst. Angew. Chem. Int. Ed. 60, 26829–26836 (2021).

    Article  CAS  Google Scholar 

  36. Wang, Y. et al. Nitrate electroreduction: mechanism insight, in situ characterization, performance evaluation, and challenges. Chem. Soc. Rev. 50, 6720–6733 (2021).

    Article  CAS  PubMed  Google Scholar 

  37. He, W. et al. Splicing the active phases of copper/cobalt-based catalysts achieves high-rate tandem electroreduction of nitrate to ammonia. Nat. Commun. 13, 1129 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Wang, Y. et al. Structurally disordered RuO2 nanosheets with rich oxygen vacancies for enhanced nitrate electroreduction to ammonia. Angew. Chem. Int. Ed. 134, e202202604 (2022).

    Article  Google Scholar 

  39. Shen, J. et al. Oxygen-vacancy-rich nickel hydroxide nanosheet: a multifunctional layer between Ir and Si toward enhanced solar hydrogen production in alkaline media. Energy Environ. Sci. 15, 3051–3061 (2022).

    Article  CAS  Google Scholar 

  40. Duan, W. et al. In situ reconstruction of metal oxide cathodes for ammonium generation from high-strength nitrate wastewater: elucidating the role of the substrate in the performance of Co3O4-x. Environ. Sci. Technol. 57, 3893–3904 (2023).

    Article  CAS  PubMed  Google Scholar 

  41. Dionigi, F. et al. In-situ structure and catalytic mechanism of NiFe and CoFe layered double hydroxides during oxygen evolution. Nat. Commun. 11, 2522 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Zhu, T. et al. Single‐atom Cu catalysts for enhanced electrocatalytic nitrate reduction with significant alleviation of nitrite production. Small 16, 2004526 (2020).

    Article  CAS  Google Scholar 

  43. Peng, L. et al. Atomic cation‐vacancy engineering of NiFe‐layered double hydroxides for improved activity and stability towards the oxygen evolution reaction. Angew. Chem. Int. Ed. 60, 24612–24619 (2021).

    Article  CAS  Google Scholar 

  44. Bo, X. et al. Operando Raman spectroscopy reveals Cr-induced-phase reconstruction of NiFe and CoFe oxyhydroxides for enhanced electrocatalytic water oxidation. Chem. Mater. 32, 4303–4311 (2020).

    Article  CAS  Google Scholar 

  45. Liu, C. et al. Specifically adsorbed ferrous ions modulate interfacial affinity for high-rate ammonia electrosynthesis from nitrate in neutral media. Proc. Natl Acad. Sci. USA 120, e2209979120 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Mao, R. et al. Selective conversion of nitrate to nitrogen gas by enhanced electrochemical process assisted by reductive Fe (II)-Fe (III) hydroxides at cathode surface. Appl. Catal. B 298, 120552 (2021).

    Article  CAS  Google Scholar 

  47. Hall, D. S. et al. Applications of in situ Raman spectroscopy for identifying nickel hydroxide materials and surface layers during chemical aging. ACS Appl. Mater. Interfaces 6, 3141–3149 (2014).

    Article  CAS  PubMed  Google Scholar 

  48. Hammer, B., Hansen, L. B. & Nørskov, J. K. Improved adsorption energetics within density-functional theory using revised Perdew–Burke–Ernzerhof functionals. Phys. Rev. B 59, 7413 (1999).

    Article  Google Scholar 

  49. Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169 (1996).

    Article  CAS  Google Scholar 

  50. Grimme, S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 27, 1787–1799 (2006).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (grant numbers 52270082 (R.M.), 22276210 (X.Z.) and 22106173 (J.Z.)) and Tianjin Science and Technology Program (grant number 22YFYSHZ00270 (R.M.)).

Author information

Authors and Affiliations

Authors

Contributions

X.Z. conceived and designed this project and revised this original manuscript. K.W. performed experiments, electrode materials preparation, characterization, data analysis and prepared the manuscript. R.M. contributed to the materials characterizations and experimental data analysis and revised the manuscript. R.L. contributed to discussion and draft editing. J.Z., H.Z. and W.R. discussed the results.

Corresponding author

Correspondence to Xu Zhao.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Water thanks Jianzhou Gui and Li-Zhi Huang for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Methods, Figs. 1–35, Tables 1–6 and Refs. 1–12.

Source data

Source Data Fig. 1

Statistical source data.

Source Data Fig. 2

Statistical source data.

Source Data Fig. 3

Statistical source data.

Source Data Fig. 4

Statistical source data.

Source Data Fig. 5

Statistical source data.

Source Data Fig. 6

Statistical source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, K., Mao, R., Liu, R. et al. Intentional corrosion-induced reconstruction of defective NiFe layered double hydroxide boosts electrocatalytic nitrate reduction to ammonia. Nat Water 1, 1068–1078 (2023). https://doi.org/10.1038/s44221-023-00169-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44221-023-00169-3

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing