Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Sub-Saharan Africa will increasingly become the dominant hotspot of surface water pollution

Subjects

Abstract

Human activities greatly impact surface water quality, while being reliant upon it for water supply. Surface water quality is expected to change in the future as a result of alterations to pollutant loadings, surface water withdrawals and hydrological regimes, driven by both climate change and socio-economic developments. Here we use a high-resolution global surface water quality model to project water temperature and indicators of salinity (total dissolved solids), organic (biological oxygen demand) and pathogen (fecal coliform) pollution until 2100. The results show that while surface water quality, as indicated by these pollutants, will improve in most advanced economies, the outlook for poorer nations is bleak. The proportion of the global population exposed to salinity, organic and pathogen pollution by the end of the century ranges from 17 to 27%, 20 to 37% and 22 to 44%, respectively, with poor surface water quality disproportionately affecting people living in developing countries. Exhibiting the largest increases in both the absolute and relative number of people exposed, irrespective of climate change and socio-economic development scenario, we conclude that Sub-Saharan Africa will become the new hotspot of surface water pollution globally.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Future pollutant loadings by contributing water use sector.
Fig. 2: Change in surface water quality under uncertain climate and socio-economic change.
Fig. 3: Change in surface water quality at outlets of major river basins under uncertain climate and socio-economic change.
Fig. 4: Seasonal variability in surface water quality in selected African cities under uncertain climate and socio-economic change.
Fig. 5: Exceedance of BOD concentration thresholds under uncertain climate and socio-economic change.
Fig. 6: Population exposed to surface water pollution under uncertain climate and socio-economic change.
Fig. 7: Severe deterioration of surface water quality threatens populations across most of Africa, irrespective of future climate and socio-economic scenario.
Fig. 8: Geographic distribution of the global population versus the global population exposed to organic pollution under uncertain climate and socio-economic change.

Similar content being viewed by others

Data availability

Global hydrological and surface water quality output at 10 km resolution, per GCM and global change scenario (RCP–SSP), is available open-access at https://doi.org/10.5281/zenodo.7811612.

Code availability

The surface water quality model used in this study, DynQual, is available open-access through a GitHub repository (https://github.com/UU-Hydro/DYNQUAL).

References

  1. Arnell, N. W. Climate change and global water resources. Global Environ. Change 9, S31–S49 (1999).

    Article  Google Scholar 

  2. Haddeland, I. et al. Global water resources affected by human interventions and climate change. Proc. Natl Acad. Sci. USA 111, 3251–3256 (2014).

    Article  CAS  PubMed  Google Scholar 

  3. Konapala, G., Mishra, A. K., Wada, Y. & Mann, M. E. Climate change will affect global water availability through compounding changes in seasonal precipitation and evaporation. Nat. Commun. 11, 3044 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Kraaijenbrink, P. D. A., Stigter, E. E., Yao, T. & Immerzeel, W. W. Climate change decisive for Asia’s snow meltwater supply. Nat. Clim. Change 11, 591–597 (2021).

    Article  Google Scholar 

  5. Trenberth, K. E. et al. Global warming and changes in drought. Nat. Clim. Change 4, 17–22 (2014).

    Article  Google Scholar 

  6. Wada, Y. et al. Modeling global water use for the 21st century: the Water Futures and Solutions (WFaS) initiative and its approaches. Geosci. Model Dev. 9, 175–222 (2016).

    Article  Google Scholar 

  7. Jones, E. R. et al. Current wastewater treatment targets are insufficient to protect surface water quality. Commun. Earth Environ. 3, 221 (2022).

    Article  Google Scholar 

  8. van Vliet, M. T. H. et al. Global water scarcity including surface water quality and expansions of clean water technologies. Environ. Res. Lett. 16, 024020 (2021).

    Article  Google Scholar 

  9. Jones, E. R. et al. DynQual v1.0: a high-resolution global surface water quality model. Geosci. Model Dev. Discuss. 2022, 1–24 (2022).

    Google Scholar 

  10. Jones, E. R., van Vliet, M. T. H., Qadir, M. & Bierkens, M. F. P. Country-level and gridded estimates of wastewater production, collection, treatment and reuse. Earth Syst. Sci. Data 13, 237–254 (2021).

    Article  Google Scholar 

  11. Bosmans, J. et al. FutureStreams, a global dataset of future streamflow and water temperature. Sci. Data 9, 307 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Reder, K., Flörke, M. & Alcamo, J. Modeling historical fecal coliform loadings to large European rivers and resulting in-stream concentrations. Environ. Model. Softw. 63, 251–263 (2015).

    Article  Google Scholar 

  13. Caretta, M. A. et al. in Climate Change 2022: Impacts, Adaptation, and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. (eds H.-O. Pörtner, D.C. Roberts, M. Tignor, E.S. Poloczanska, K. Mintenbeck, A. Alegría, M. Craig, S. Langsdorf, S. Löschke, V. Möller, A. Okem, B. Rama) pp. 551–712 (Cambridge Univ. Press, 2022).

  14. Schewe, J. et al. Multimodel assessment of water scarcity under climate change. Proc. Natl Acad. Sci. USA 111, 3245–3250 (2014).

    Article  CAS  PubMed  Google Scholar 

  15. Riahi, K. et al. The Shared Socioeconomic Pathways and their energy, land use, and greenhouse gas emissions implications: an overview. Global Environ. Change 42, 153–168 (2017).

    Article  Google Scholar 

  16. O’Neill, B. C. et al. The roads ahead: narratives for shared socioeconomic pathways describing world futures in the 21st century. Global Environ. Change 42, 169–180 (2017).

    Article  Google Scholar 

  17. Wada, Y., Wisser, D. & Bierkens, M. F. P. Global modeling of withdrawal, allocation and consumptive use of surface water and groundwater resources. Earth Syst. Dynam. 5, 15–40 (2014).

    Article  Google Scholar 

  18. Döll, P. et al. Risks for the global freshwater system at 1.5 °C and 2 °C global warming. Environ. Res. Lett. 13, 044038 (2018).

    Article  Google Scholar 

  19. Hanasaki, N., Yoshikawa, S., Pokhrel, Y. & Kanae, S. A quantitative investigation of the thresholds for two conventional water scarcity indicators using a state-of-the-art global hydrological model with human activities. Water Resour. Res. 54, 8279–8294 (2018).

    Article  Google Scholar 

  20. van Vliet, M. et al. Global river discharge and water temperature under climate change. Global Environ. Change 23, 450–464 (2013).

    Article  Google Scholar 

  21. Sutanudjaja, E. et al. PCR-GLOBWB 2: a 5 arcmin global hydrological and water resources model. Geosci. Model Dev. 11, 2429–2453 (2018).

    Article  Google Scholar 

  22. UNEP. A snapshot of the world’s water quality: towards a global assessment. United Nations Environment Programme, Nairobi, Kenya https://www.unep.org/resources/publication/snapshot-report-worlds-water-quality (2016).

  23. Büchner, S. L. A. ISIMIP3b bias-adjusted atmospheric climate input data. ISIMIP https://doi.org/10.48364/ISIMIP.842396.1 (2021).

  24. Hoch, J. M., Sutanudjaja, E. H., Wanders, N., van Beek, R. L. P. H. & Bierkens, M. F. P. Hyper-resolution PCR-GLOBWB: opportunities and challenges from refining model spatial resolution to 1 km over the European continent. Hydrol. Earth Syst. Sci. 27, 1383–1401 (2023).

    Article  Google Scholar 

  25. Wanders, N., van Vliet, M. T. H., Wada, Y., Bierkens, M. F. P. & van Beek, L. P. H. High-resolution global water temperature modeling. Water Resour. Res. 55, 2760–2778 (2019).

    Article  Google Scholar 

  26. Her, Y. et al. Uncertainty in hydrological analysis of climate change: multi-parameter vs. multi-GCM ensemble predictions. Sci. Rep. 9, 4974 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  27. van der Wiel, K., Wanders, N., Selten, F. M. & Bierkens, M. F. P. Added value of large ensemble simulations for assessing extreme river discharge in a 2 °C warmer world. Geophys. Res. Lett. 46, 2093–2102 (2019).

    Article  Google Scholar 

  28. Damania, R., Desbureaux, S., Rodella, A.-S., Russ, J. & Zaveri, E. Quality Unknown: the Invisible Water Crises (World Bank Group, 2019).

    Book  Google Scholar 

  29. Barbarossa, V. et al. Threats of global warming to the world’s freshwater fishes. Nat. Commun. 12, 1701 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Wen, Y., Schoups, G. & van de Giesen, N. Organic pollution of rivers: combined threats of urbanization, livestock farming and global climate change. Sci. Rep. 7, 43289 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Desbureaux, S. et al. Mapping global hotspots and trends of water quality (1992–2010): a data driven approach. Environ. Res. Lett. 17, 114048 (2022).

    Article  Google Scholar 

  32. GEMStat database of the Global Environment Monitoring System for Freshwater (GEMS/Water) Programme (UNEP, 2020); https://gemstat.org/data/data-portal/

  33. Beusen, A. H. W. et al. Exploring river nitrogen and phosphorus loading and export to global coastal waters in the Shared Socio-economic pathways. Global Environ. Change 72, 102426 (2022).

    Article  Google Scholar 

  34. Xie, H. & Ringler, C. Agricultural nutrient loadings to the freshwater environment: the role of climate change and socioeconomic change. Environ. Res. Lett. 12, 104008 (2017).

    Article  Google Scholar 

  35. Morée, A. L., Beusen, A. H. W., Bouwman, A. F. & Willems, W. J. Exploring global nitrogen and phosphorus flows in urban wastes during the twentieth century. Global Biogeochem. Cycles 27, 836–846 (2013).

    Article  Google Scholar 

  36. Van Drecht, G., Bouwman, A. F., Harrison, J. & Knoop, J. M. Global nitrogen and phosphate in urban wastewater for the period 1970 to 2050. Glob. Biogeochem. Cycles https://doi.org/10.1029/2009gb003458 (2009).

  37. Jones, B. & O’Neill, B. C. Spatially explicit global population scenarios consistent with the Shared Socioeconomic Pathways. Environ. Res. Lett. 11, 084003 (2016).

    Article  Google Scholar 

  38. Hurtt, G. C. et al. Harmonization of global land use change and management for the period 850–2100 (LUH2) for CMIP6. Geosci. Model Dev. 13, 5425–5464 (2020).

    Article  CAS  Google Scholar 

  39. Gilbert, M. et al. Global distribution data for cattle, buffaloes, horses, sheep, goats, pigs, chickens and ducks in 2010. Sci. Data 5, 180227 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Graham, N. T. et al. Water sector assumptions for the Shared Socioeconomic Pathways in an integrated modeling framework. Water Resour. Res. 54, 6423–6440 (2018).

    Article  Google Scholar 

  41. Lohrmann, A., Farfan, J., Caldera, U., Lohrmann, C. & Breyer, C. Global scenarios for significant water use reduction in thermal power plants based on cooling water demand estimation using satellite imagery. Nat. Energy 4, 1040–1048 (2019).

    Article  Google Scholar 

  42. van Puijenbroek, P. J. T. M., Beusen, A. H. W. & Bouwman, A. F. Global nitrogen and phosphorus in urban waste water based on the Shared Socio-economic pathways. J. Environ. Manage. 231, 446–456 (2019).

    Article  PubMed  Google Scholar 

  43. Jones, E., Qadir, M., van Vliet, M. T. H., Smakhtin, V. & Kang, S.-M. The state of desalination and brine production: a global outlook. Sci. Total Environ. 657, 1343–1356 (2019).

    Article  CAS  PubMed  Google Scholar 

  44. Fick, S. E. & Hijmans, R. J. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).

    Article  Google Scholar 

  45. Fipps, G. Irrigation water quality standards and salinity management strategies. Texas FARMER Collection https://twon.tamu.edu/wp-content/uploads/sites/3/2021/06/irrigation-water-quality-standards-and-salinity-management-strategies-1.pdf (2003).

  46. Zaman, M., Shahid, S. A. & Heng, L. in Guideline for Salinity Assessment, Mitigation and Adaptation Using Nuclear and Related Techniques 113–131 (Springer International Publishing, 2018).

  47. Nahian, M. A. et al. Drinking water salinity associated health crisis in coastal Bangladesh. Elementa Sci Anthr. https://doi.org/10.1525/elementa.143 (2018).

Download references

Acknowledgements

M.T.H.v.V. was financially supported by the Netherlands Scientific Organisation (NWO) by a VIDI grant (VI.Vidi.193.019) and European Research Council under the European Union’s Horizon Europe research and innovation programme (grant agreement 101039426). We acknowledge and thank the Netherlands Organisation for Scientific Research (NWO) for the grant that enabled us to use the national supercomputer Snellius (project: EINF-3999).

Author information

Authors and Affiliations

Authors

Contributions

The research was designed by E.R.J., M.F.P.B. and M.T.H.v.V. The model runs, data analysis and paper writing were led by E.R.J., with feedback from M.F.P.B. and M.T.H.v.V. Data on wastewater scenarios and water use scenarios under the different SSPs were provided by P.J.T.M.v.P. and L.P.H.v.B., respectively. N.W. and E.H.S. aided in the development of the water quality model, and provided processed meteorological input data required for the model runs. All authors approved the paper.

Corresponding author

Correspondence to Edward R. Jones.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Water thanks Pinar Omur-Ozbek and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary information

Supplementary Figs. 1–19.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jones, E.R., Bierkens, M.F.P., van Puijenbroek, P.J.T.M. et al. Sub-Saharan Africa will increasingly become the dominant hotspot of surface water pollution. Nat Water 1, 602–613 (2023). https://doi.org/10.1038/s44221-023-00105-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44221-023-00105-5

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing