Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Sorbents, processes and applications beyond water production in sorption-based atmospheric water harvesting

Abstract

Growth in the global population and the modernization of human society, along with ever-worsening climate change, is pushing already scarce freshwater resources to their limits. Sorption-based atmospheric water harvesting (AWH) is an emerging process that takes advantage of atmospheric water vapour as an alternative water resource and has great potential in producing freshwater at a decentralized scale by using low-grade energy—especially solar thermal energy—in a sustainable manner. The past 5 years have witnessed great advances in AWH sorbents, system designs and new applications beyond water production. Here we utilize a unique chemical potential-based approach and critically analyse the available literature on sorption-based AWH. We provide an overview of the three-step AWH process, discuss AWH sorbents and their key features and properties, analyse water production systems, review AWH’s application to water production and beyond, and provide perspective on how managing the current challenges could lead to new opportunities.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic of chemical potential variation during the sorption-based AWH process and types of AWH sorbent.
Fig. 2: Comparisons of sorption heat, \({\boldsymbol{\mu}}_{{{\mathbf{H}}}_{\mathbf{2}}{\mathbf{O}},{\mathbf{onset}}}\) and RHonset.
Fig. 3: AWH system designs and critical condensation temperatures.
Fig. 4: Geographical distributions of air temperature, water vapour partial pressure and chemical potential in January and July of 2020.
Fig. 5: Applications of AWH-based processes.

Similar content being viewed by others

References

  1. Mekonnen, M. M. & Hoekstra, A. Y. Four billion people facing severe water scarcity. Sci. Adv. 2, e1500323 (2016).

    PubMed  PubMed Central  Google Scholar 

  2. Garrick, D. & Hall, J. W. Water security and society: risks, metrics, and pathways. Annu. Rev. Environ. Resour. 39, 611–639 (2014).

    Google Scholar 

  3. Lim, K. Water Security and the Sustainable Development Goals (UNESCO & WSSM, 2019).

  4. Busby, J. Water and U.S. National Security (Council on Foreign Relations, 2017).

  5. Lewis, G. N., Randall, M., Pitzer, K. S. & Brewer, L. Thermodynamics (Dover Publications, 2020).

  6. Stillinger, F. H. Water revisited. Science 209, 451–457 (1980).

    CAS  PubMed  Google Scholar 

  7. Chaplin, M. Hydrogen bonding in water. Isbu https://water.lsbu.ac.uk/water/water_hydrogen_bonding.html (30 August 2022).

  8. Al-Tameemi, M. A. & Chukin, V. V. Global water cycle and solar activity variations. J. Atmos. Sol. Terr. Phys. 142, 55–59 (2016).

    Google Scholar 

  9. Bengtsson, L. The global atmospheric water cycle. Environ. Res. Lett. 5, 025202 (2010).

    Google Scholar 

  10. Al-Karaghouli, A. & Kazmerski, L. L. Energy consumption and water production cost of conventional and renewable-energy-powered desalination processes. Renew. Sustain. Energy Rev. 24, 343–356 (2013).

    CAS  Google Scholar 

  11. Kleidon, A. & Schymanski, S.Thermodynamics and optimality of the water budget on land: a review. Geophys. Res. Lett. 35, L20404 (2008).

    Google Scholar 

  12. Kleidon, A. How does the Earth system generate and maintain thermodynamic disequilibrium and what does it imply for the future of the planet? Phil. Trans. R. Soc. A Math. Phys. Eng. Sci. 370, 1012–1040 (2012).

    CAS  Google Scholar 

  13. Atkins, P., Atkins, P. W. & de Paula, J. Atkins’ Physical Chemistry (Oxford Univ. Press, 2014).

  14. Schneider, S. H., Root, T. L. & Mastrandrea, M. D. Encyclopedia of Climate and Weather (Oxford Univ. Press, 2011).

  15. Oki, T. & Kanae, S. Global hydrological cycles and world water resources. Science 313, 1068–1072 (2006).

    CAS  PubMed  Google Scholar 

  16. Wahlgren, R. V. Atmospheric water vapour processor designs for potable water production: a review. Water Res. 35, 1–22 (2001).

    CAS  PubMed  Google Scholar 

  17. Beysens, D. A., Milimouk, I. & Schweitzer, A. The case for alternative fresh water sources. Sécheresse 11, 4 (2000).

    Google Scholar 

  18. Li, R. Harvesting Clean Water from Air. PhD thesis, King Abdullah University of Science and Technology (2019).

  19. Klemm, O. et al. Fog as a fresh-water resource: overview and perspectives. Ambio 41, 221–234 (2012).

    PubMed  PubMed Central  Google Scholar 

  20. Haechler, I. et al. Exploiting radiative cooling for uninterrupted 24-hour water harvesting from the atmosphere. Sci. Adv. 7, eabf3978 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Tomaszkiewicz, M., Najm, M. A., Beysens, D., Alameddine, I. & El-Fadel, M. Dew as a sustainable non-conventional water resource: a critical review. Environ. Rev. 23, 425–442 (2015).

    Google Scholar 

  22. Ejeian, M. & Wang, R. Z. Adsorption-based atmospheric water harvesting. Joule 5, 1678–1703 (2021).

    Google Scholar 

  23. LaPotin, A., Kim, H., Rao, S. R. & Wang, E. N. Adsorption-based atmospheric water harvesting: impact of material and component properties on system-level performance. Acc. Chem. Res. 52, 1588–1597 (2019).

    CAS  PubMed  Google Scholar 

  24. Yang, K. et al. A roadmap to sorption-based atmospheric water harvesting: from molecular sorption mechanism to sorbent design and system optimization. Environ. Sci. Technol. 55, 6542–6560 (2021).

    CAS  PubMed  Google Scholar 

  25. Tu, Y., Wang, R., Zhang, Y. & Wang, J. Progress and expectation of atmospheric water harvesting. Joule 2, 1452–1475 (2018).

    CAS  Google Scholar 

  26. Wang, B., Zhou, X., Guo, Z. & Liu, W. Recent advances in atmosphere water harvesting: design principle, materials, devices, and applications. Nano Today 40, 101283 (2021).

    CAS  Google Scholar 

  27. Zhou, X., Lu, H., Zhao, F. & Yu, G. Atmospheric water harvesting: a review of material and structural designs. ACS Mater. Lett. 2, 671–684 (2020).

    CAS  Google Scholar 

  28. Lu, H. et al. Materials engineering for atmospheric water harvesting: progress and perspectives. Adv. Mater. 34, 2110079 (2022).

    CAS  Google Scholar 

  29. Li, Z. et al. Solar-powered sustainable water production: state-of-the-art technologies for sunlight–energy–water nexus. ACS Nano 15, 12535–12566 (2021).

    CAS  PubMed  Google Scholar 

  30. Li, R. et al. Hybrid hydrogel with high water vapor harvesting capacity for deployable solar-driven atmospheric water generator. Environ. Sci. Technol. 52, 11367–11377 (2018).

    CAS  PubMed  Google Scholar 

  31. Kim, H. et al. Adsorption-based atmospheric water harvesting device for arid climates. Nat. Commun. 9, 1191 (2018).

    PubMed  PubMed Central  Google Scholar 

  32. Fathieh, F. et al. Practical water production from desert air. Sci. Adv. 4, eaat3198 (2018).

    PubMed  PubMed Central  Google Scholar 

  33. Kim, H. et al. Water harvesting from air with metal–organic frameworks powered by natural sunlight. Science 356, 430–434 (2017).

    CAS  PubMed  Google Scholar 

  34. Lord, J. et al. Global potential for harvesting drinking water from air using solar energy. Nature 598, 611–617 (2021).

    PubMed  PubMed Central  Google Scholar 

  35. Alayli, Y., Hadji, N. & Leblond, J. A new process for the extraction of water from air. Desalination 67, 227–229 (1987).

    CAS  Google Scholar 

  36. Wang, X. et al. An interfacial solar heating assisted liquid sorbent atmospheric water generator. Angew. Chem. Int. Ed. 58, 12054–12058 (2019).

    CAS  Google Scholar 

  37. Xu, W. & Yaghi, O. M. Metal–organic frameworks for water harvesting from air, anywhere, anytime. ACS Cent. Sci. 6, 1348–1354 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Yang, J. et al. A moisture-hungry copper complex harvesting air moisture for potable water and autonomous urban agriculture. Adv. Mater. 32, 2002936 (2020).

    CAS  Google Scholar 

  39. Hanikel, N., Prévot, M. S. & Yaghi, O. M. MOF water harvesters. Nat. Nanotechnol. 15, 348–355 (2020).

    CAS  PubMed  Google Scholar 

  40. Zhao, F. et al. Super moisture-absorbent gels for all-weather atmospheric water harvesting. Adv. Mater. 31, 1806446 (2019).

    Google Scholar 

  41. Byun, Y. & Coskun, A. Epoxy-functionalized porous organic polymers via the Diels–Alder cycloaddition reaction for atmospheric water capture. Angew. Chem. Int. Ed. 57, 3173–3177 (2018).

    CAS  Google Scholar 

  42. Wu, M. et al. Metal- and halide-free, solid-state polymeric water vapor sorbents for efficient water-sorption-driven cooling and atmospheric water harvesting. Mater. Horiz. 8, 1518–1527 (2021).

    CAS  PubMed  Google Scholar 

  43. Xu, J. et al. Ultrahigh solar-driven atmospheric water production enabled by scalable rapid-cycling water harvester with vertically aligned nanocomposite sorbent. Energy Environ. Sci. 14, 5979–5994 (2021).

    CAS  Google Scholar 

  44. Li, R., Shi, Y., Wu, M., Hong, S. & Wang, P. Improving atmospheric water production yield: enabling multiple water harvesting cycles with nano sorbent. Nano Energy 67, 104255 (2020).

    CAS  Google Scholar 

  45. Deng, F., Wang, C., Xiang, C. & Wang, R. Bioinspired topological design of super hygroscopic complex for cost-effective atmospheric water harvesting. Nano Energy 90, 106642 (2021).

    CAS  Google Scholar 

  46. Wang, J. et al. High-yield and scalable water harvesting of honeycomb hygroscopic polymer driven by natural sunlight. Cell Rep. Phys. Sci. 3, 100954 (2022).

    CAS  Google Scholar 

  47. LaPotin, A. et al. Dual-stage atmospheric water harvesting device for scalable solar-driven water production. Joule 5, 166–182 (2021).

    CAS  Google Scholar 

  48. Li, R. et al. An integrated solar-driven system produces electricity with fresh water and crops in arid regions. Cell Rep. Phys. Sci. 3, 100781 (2022).

    CAS  Google Scholar 

  49. Zhou, X., Zhang, P., Zhao, F. & Yu, G. Super moisture absorbent gels for sustainable agriculture via atmospheric water irrigation. ACS Mater. Lett. 2, 1419–1422 (2020).

    CAS  Google Scholar 

  50. Li, R., Shi, Y., Wu, M., Hong, S. & Wang, P. Photovoltaic panel cooling by atmospheric water sorption–evaporation cycle. Nat. Sustain. 3, 636–643 (2020).

    Google Scholar 

  51. Wang, C. et al. A thermal management strategy for electronic devices based on moisture sorption–desorption processes. Joule 4, 435–447 (2020).

    CAS  Google Scholar 

  52. Pu, S. et al. Promoting energy efficiency via a self-adaptive evaporative cooling hydrogel. Adv. Mater. 32, 1907307 (2020).

    CAS  Google Scholar 

  53. Xu, J. et al. Near-zero-energy smart battery thermal management enabled by sorption energy harvesting from air. ACS Cent. Sci. 6, 1542–1554 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Yang, L. et al. Energy harvesting from atmospheric humidity by a hydrogel-integrated ferroelectric-semiconductor system. Joule 4, 176–188 (2020).

    CAS  Google Scholar 

  55. Zhang, Y., Nandakumar, D. K. & Tan, S. C. Digestion of ambient humidity for energy generation. Joule 4, 2532–2536 (2020).

    Google Scholar 

  56. Pu, S. et al. Thermogalvanic hydrogel for synchronous evaporative cooling and low-grade heat energy harvesting. Nano Lett. 20, 3791–3797 (2020).

    CAS  PubMed  Google Scholar 

  57. Cui, Y., Gao, S., Zhang, R., Cheng, L. & Yu, J. Study on the moisture absorption and thermal properties of hygroscopic exothermic fibers and related interactions with water molecules. Polymers 12, 98 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Barton, S. S., Evans, M. J. B. & MacDonald, J. A. F. The adsorption of water vapor by porous carbon. Carbon 29, 1099–1105 (1991).

    CAS  Google Scholar 

  59. Feng, Y., Ge, T., Chen, B., Zhan, G. & Wang, R. A regulation strategy of sorbent stepwise position for boosting atmospheric water harvesting in arid area. Cell Rep. Phys. Sci. 2, 100561 (2021).

    CAS  Google Scholar 

  60. Díaz-Marín, D. C. et al. Kinetics of sorption in hygroscopic hydrogels. Nano Lett. 22, 1100–1107 (2022).

    PubMed  Google Scholar 

  61. Díaz-Marín, D. C. et al. Heat and mass transfer in hygroscopic hydrogels. Int. J. Heat Mass Transf. 195, 1231031 (2022).

    Google Scholar 

  62. Laption, A., Kim, H., Rao, R. S. & Wang, N. E. Adsorption-based atmosptheric water harvesting: impact of material and component properties on system-level performance. Acc. Chem. Res. 52, 1588–1597 (2019).

    Google Scholar 

  63. Furukawa, H. et al. Water adsorption in porous metal–organic frameworks and related materials. J. Am. Chem. Soc. 136, 4369–4381 (2014).

    CAS  PubMed  Google Scholar 

  64. Hassanizadeh, S. M. & Gray, W. G. Thermodynamic basis of capillary pressure in porous media. Water Resour. Res. 29, 3389–3405 (1993).

    Google Scholar 

  65. Thissen, P., Grundmeier, G., Wippermann, S. & Schmidt, W. G. Water adsorption on the α-Al2O3(0001) surface. Phys. Rev. B 80, 245403 (2009).

    Google Scholar 

  66. Li, R., Shi, Y., Shi, L., Alsaedi, M. & Wang, P. Harvesting water from air: using anhydrous salt with sunlight. Environ. Sci. Technol. 52, 5398–5406 (2018).

    CAS  PubMed  Google Scholar 

  67. El-Houte, S., El-Sayed Ali, M. & Sørensen, O. T. Dehydration of CuSO4·5H2O studied by conventional and advanced thermal analysis techniques. Thermochim. Acta 138, 107–114 (1989).

    CAS  Google Scholar 

  68. Ishitobi, H., Uruma, K., Takeuchi, M., Ryu, J. & Kato, Y. Dehydration and hydration behavior of metal-salt-modified materials for chemical heat pumps. Appl. Therm. Eng. 50, 1639–1644 (2013).

    CAS  Google Scholar 

  69. House, J. E. Inorganic Chemistry (Academic Press, 2019).

  70. Kim, K.-M. et al. Adsorption equilibria of water vapor on zeolite 3A, zeolite 13X, and dealuminated Y zeolite. J. Chem. Eng. Data 61, 1547–1554 (2016).

    CAS  Google Scholar 

  71. Zhu, W. et al. Water vapour separation from permanent gases by a zeolite-4A membrane. J. Membr. Sci. 253, 57–66 (2005).

    CAS  Google Scholar 

  72. Tsuru, T., Hino, T., Yoshioka, T. & Asaeda, M. Permporometry characterization of microporous ceramic membranes. J. Membr. Sci. 186, 257–265 (2001).

    CAS  Google Scholar 

  73. Canivet, J., Fateeva, A., Guo, Y., Coasne, B. & Farrusseng, D. Water adsorption in MOFs: fundamentals and applications. Chem. Soc. Rev. 43, 5594–5617 (2014).

    CAS  PubMed  Google Scholar 

  74. Hanikel, N. et al. Evolution of water structures in metal–organic frameworks for improved atmospheric water harvesting. Science 374, 454–459 (2021).

    CAS  PubMed  Google Scholar 

  75. Hanikel, N. et al. Rapid cycling and exceptional yield in a metal–organic framework water harvester. ACS Cent. Sci. 5, 1699–1706 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Nguyen, H. L. et al. A porous covalent organic framework with voided square grid topology for atmospheric water harvesting. J. Am. Chem. Soc. 142, 2218–2221 (2020).

    CAS  PubMed  Google Scholar 

  77. Fritz, P. W. & Coskun, A. Postfunctionalized covalent organic frameworks for water harvesting. ACS Cent. Sci. 8, 871–873 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Nguyen, H. L. et al. Hydrazine-hydrazide-linked covalent organic frameworks for water harvesting. ACS Cent. Sci. 8, 926–932 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Kalmutzki, M. J., Diercks, C. S. & Yaghi, O. M. Metal–organic frameworks for water harvesting from air. Adv. Mater. 30, 1704304 (2018).

    Google Scholar 

  80. Liu, X., Wang, X. & Kapteijn, F. Water and metal–organic frameworks: from interaction toward utilization. Chem. Rev. 120, 8303–8377 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Feng, A. et al. Recent development of atmospheric water harvesting materials: a review. ACS Mater. Au 2, 576–595 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Fumo, N. & Goswami, D. Y. Study of an aqueous lithium chloride desiccant system: air dehumidification and desiccant regeneration. Sol. Energy 72, 351–361 (2002).

    CAS  Google Scholar 

  83. Şencan, A., Yakut, K. A. & Kalogirou, S. A. Exergy analysis of lithium bromide/water absorption systems. Renew. Energy 30, 645–657 (2005).

    Google Scholar 

  84. Hassan, A. A. M. & Hassan, M. S. Dehumidification of air with a newly suggested liquid desiccant. Renew. Energy 33, 1989–1997 (2008).

    Google Scholar 

  85. Aleid, S. et al. Salting-in effect of zwitterionic polymer hydrogel facilitates atmospheric water harvesting. ACS Mater. Lett. 4, 511–520 (2022).

    CAS  Google Scholar 

  86. Vargaftik, N. B. Handbook of Physical Properties of Liquids and GasesPure Substances and Mixtures 2nd edn (Springer, 1975).

  87. Qi, H. et al. An interfacial solar-driven atmospheric water generator based on a liquid sorbent with simultaneous adsorption–desorption. Adv. Mater. 31, 1903378 (2019).

    CAS  Google Scholar 

  88. Zhao, F. et al. Highly efficient solar vapour generation via hierarchically nanostructured gels. Nat. Nanotechnol. 13, 489–495 (2018).

    CAS  PubMed  Google Scholar 

  89. Zhao, F., Guo, Y., Zhou, X., Shi, W. & Yu, G. Materials for solar-powered water evaporation. Nat. Rev. Mater. 5, 388–401 (2020).

    Google Scholar 

  90. Matsumoto, K., Sakikawa, N. & Miyata, T. Thermo-responsive gels that absorb moisture and ooze water. Nat. Commun. 9, 2315 (2018).

    PubMed  PubMed Central  Google Scholar 

  91. Mohanrao, R. & Sureshan, K. M. Synthesis and reversible hydration of a pseudoprotein, a fully organic polymeric desiccant by multiple single-crystal-to-single-crystal transformations. Angew. Chem. Int. Ed. 57, 12435–12439 (2018).

    CAS  Google Scholar 

  92. Byun, J., Patel, H. A., Thirion, D. & Yavuz, C. T. Reversible water capture by a charged metal-free porous polymer. Polymer 126, 308–313 (2017).

    CAS  Google Scholar 

  93. Thijs, H. M. L. et al. Water uptake of hydrophilic polymers determined by a thermal gravimetric analyzer with a controlled humidity chamber. J. Mater. Chem. 17, 4864–4871 (2007).

    CAS  Google Scholar 

  94. Ni, F. et al. Tillandsia-inspired hygroscopic photothermal organogels for efficient atmospheric water harvesting. Angew. Chem. Int. Ed. 59, 19237–19246 (2020).

    CAS  Google Scholar 

  95. Wang, M. et al. Solar-powered nanostructured biopolymer hygroscopic aerogels for atmospheric water harvesting. Nano Energy 80, 105569 (2021).

    CAS  Google Scholar 

  96. Yao, H. et al. Highly efficient clean water production from contaminated air with a wide humidity range. Adv. Mater. 32, 1905875 (2020).

    CAS  Google Scholar 

  97. Lu, H. et al. Tailoring the desorption behavior of hygroscopic gels for atmospheric water harvesting in arid climates. Adv. Mater. 34, 2205344 (2022).

    CAS  Google Scholar 

  98. Guo, Y. et al. Scalable super hygroscopic polymer films for sustainable moisture harvesting in arid environments. Nat. Commun. 13, 2761 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Karmakar, A. et al. Thermo-responsive MOF/polymer composites for temperature-mediated water capture and release. Angew. Chem. Int. Ed. 59, 11003–11009 (2020).

    CAS  Google Scholar 

  100. Entezari, A., Ejeian, M. & Wang, R. Super atmospheric water harvesting hydrogel with alginate chains modified with binary salts. ACS Mater. Lett. 2, 471–477 (2020).

    CAS  Google Scholar 

  101. Lei, C. et al. Polyzwitterionic hydrogels for efficient atmospheric water harvesting. Angew. Chem. Int. Ed. 61, e202200271 (2022).

    CAS  Google Scholar 

  102. Wang, J. Y., Wang, R. Z., Tu, Y. D. & Wang, L. W. Universal scalable sorption-based atmosphere water harvesting. Energy 165, 387–395 (2018).

    Google Scholar 

  103. Kim, S., Liang, Y., Kang, S. & Choi, H. Solar-assisted smart nanofibrous membranes for atmospheric water harvesting. Chem. Eng. J. 425, 131601 (2021).

    CAS  Google Scholar 

  104. Ejeian, M., Entezari, A. & Wang, R. Z. Solar powered atmospheric water harvesting with enhanced LiCl/MgSO4/ACF composite. Appl. Therm. Eng. 176, 115396 (2020).

    CAS  Google Scholar 

  105. Mulchandani, A., Malinda, S., Edberg, J. & Westerhoff, P. Sunlight-driven atmospheric water capture capacity is enhanced by nano-enabled photothermal desiccants. Environ. Sci. Nano 7, 2584–2594 (2020).

    CAS  Google Scholar 

  106. Xu, J. et al. Efficient solar-driven water harvesting from arid air with metal–organic frameworks modified by hygroscopic salt. Angew. Chem. Int. Ed. 59, 5202–5210 (2020).

    CAS  Google Scholar 

  107. Kim, H. et al. Characterization of adsorption enthalpy of novel water-stable zeolites and metal–organic frameworks. Sci. Rep. 6, 19097 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Maher, H., Rupam, T. H., Rocky, K. A., Bassiouny, R. & Saha, B. B. Silica gel-MIL 100(Fe) composite adsorbents for ultra-low heat-driven atmospheric water harvester. Energy 238, 121741 (2022).

    CAS  Google Scholar 

  109. Wang, Z., Orejon, D., Sefiane, K. & Takata, Y. Water vapor uptake into hygroscopic lithium bromide desiccant droplets: mechanisms of droplet growth and spreading. Phys. Chem. Chem. Phys. 21, 1046–1058 (2019).

    CAS  PubMed  Google Scholar 

  110. Calcium Chloride—a Guide to Physical Properties (OXY); https://www.oxy.com/siteassets/documents/chemicals/products/other-essentials/173-01791.pdf

  111. Yang, K. et al. Hollow spherical SiO2 micro-container encapsulation of LiCl for high-performance simultaneous heat reallocation and seawater desalination. J. Mater. Chem. A 8, 1887–1895 (2020).

    CAS  Google Scholar 

  112. Zhang, L., Tang, B., Wu, J., Li, R. & Wang, P. Hydrophobic light-to-heat conversion membranes with self-healing ability for interfacial solar heating. Adv. Mater. 27, 4889–4894 (2015).

    CAS  PubMed  Google Scholar 

  113. Li, R., Zhang, L., Shi, L. & Wang, P. MXene Ti3C2: an effective 2D light-to-heat conversion material. ACS Nano 11, 3752–3759 (2017).

    CAS  PubMed  Google Scholar 

  114. Wang, P. Emerging investigator series: the rise of nano-enabled photothermal materials for water evaporation and clean water production by sunlight. Environ. Sci. Nano 5, 1078–1089 (2018).

    CAS  Google Scholar 

  115. Gao, M., Zhu, L., Peh, C. K. & Ho, G. W. Solar absorber material and system designs for photothermal water vaporization towards clean water and energy production. Energy Environ. Sci. 12, 841–864 (2019).

    CAS  Google Scholar 

  116. Zhao, L., Liu, Y., Xing, R. & Yan, X. Supramolecular photothermal effects: a promising mechanism for efficient thermal conversion. Angew. Chem. Int. Ed. 59, 3793–3801 (2020).

    CAS  Google Scholar 

  117. Poredoš, O., Shan, H., Wang, C., Deng, F. & Wang, R. Sustainable water generation: grand challenges in continuous atmospheric water harvesting. Energy Environ. Sci. 15, 3223–3235 (2022).

    Google Scholar 

  118. Nandakumar, D. K. et al. Solar energy triggered clean water harvesting from humid air existing above sea surface enabled by a hydrogel with ultrahigh hygroscopicity. Adv. Mater. 31, 1806730 (2019).

    Google Scholar 

  119. Wang, W. et al. Viability of a practical multicyclic sorption-based water harvester with improved water yield. Water Res. 211, 118029 (2022).

    CAS  PubMed  Google Scholar 

  120. Song, Y. et al. High-yield solar-driven atomspheric water harvesting of metal–organic-framework-drived nanoporous carbon with fast-diffusion water channels. Nat. Nanotechnol. 17, 857–863 (2022).

    CAS  PubMed  Google Scholar 

  121. Yilmaz, G. et al. Autonomous atmospheric water seeping MOF matrix. Sci. Adv. 6, eabc8605 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Gido, B., Friedler, E. & Broday, D. M. Liquid-desiccant vapor separation reduces the energy requirements of atmospheric moisture harvesting. Environ. Sci. Technol. 50, 8362–8367 (2016).

    CAS  PubMed  Google Scholar 

  123. Almassad, A. H., Abaza, I. R., Siwwan, L., Al-Maythalony, B. & Cordova, E. K. Environmentally adaptive MOF-based device enables continuous self-optimizing atmospheric water harvesting. Nat. Commun. 13, 4873 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Zhang, Y. et al. Atomspheric water harvesting by large-scale radiative cooling cellulose-based fabric. Nano Lett. 22, 2618–2626 (2022).

    CAS  PubMed  Google Scholar 

  125. Mulchandani, A., Edberg, J., Herckes, P. & Westerhoff, P. Seasonal atmospheric water harvesting yield and water quality using electric-powered desiccant and compressor dehumidifiers. Sci. Total Environ. 825, 153966 (2022).

    CAS  PubMed  Google Scholar 

  126. Inbar, O. et al. Producing safe drinking water using an atmospheric water generator (AWG) in an urban environment. Water 12, 2940 (2020).

    CAS  Google Scholar 

  127. Li, R. et al. Hybrid water vapor sorbent design with pollution shielding properties: extracting clean water from polluted bulk water sources. J. Mater. Chem. A 9, 14731–14740 (2021).

    CAS  Google Scholar 

  128. Mulchandani, A. & Westerhoff, P. Geospatial climatic factors influence water production of solar desiccant driven atmospheric water capture devices. Environ. Sci. Technol. 54, 8310–8322 (2020).

    CAS  PubMed  Google Scholar 

  129. Zhang, X. et al. Machine-learning-assisted autonomous humidity management system based on solar-regenerated super hygroscopic complex. Adv. Sci. 8, 2003939 (2021).

    CAS  Google Scholar 

  130. Dai, M. et al. A nanostructured moisture-absorbing gel for fast and large-scale passive dehumidification. Adv. Mater. 34, 2200865 (2022).

    CAS  Google Scholar 

  131. Gkaniatsou, E. et al. Producing cold from heat with aluminum carboxylate-based metal–organic frameworks. Cell Rep. Phys. Sci. 3, 100730 (2022).

    CAS  Google Scholar 

  132. Nandakumar, D. K. et al. A super hygroscopic hydrogel for harnessing ambient humidity for energy conservation and harvesting. Energy Environ. Sci. 11, 2179–2187 (2018).

    Google Scholar 

  133. Yang, J. et al. Reversible hydration composite films for evaporative perspiration control and heat stress management. Small 18, 2107636 (2022).

    CAS  Google Scholar 

  134. Zhang, X. et al. Super-hygroscopic film for wearables with dual functions of expediting sweat evaporation and energy harvesting. Nano Energy 75, 104873 (2020).

    CAS  Google Scholar 

  135. Wang, F., Xu, N. & Zhu, J. Sorption energy harvesting from air for smart battery thermal management. ACS Cent. Sci. 6, 1479–1481 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Ni, F. et al. Atmospheric hygroscopic ionogels with dynamically stable cooling interfaces enable a durable thermoelectric performance enhancement. Adv. Mater. 33, 2103937 (2021).

    CAS  Google Scholar 

  137. Yang, L. et al. Sustainable fuel production from ambient moisture via ferroelectrically driven MoS2 nanosheets. Adv. Mater. 32, 2000971 (2020).

    CAS  Google Scholar 

  138. Yang, L. et al. A hybrid artificial photocatalysis system splits atmospheric water for simultaneous dehumidification and power generation. Adv. Mater. 31, 1902963 (2019).

    CAS  Google Scholar 

  139. Yang, K., Pan, T., Pinnau, I., Shi, Z. & Han, Y. Simultaneous generation of atmospheric water and electricity using a hygroscopic aerogel with fast sorption kinetics. Nano Energy 78, 105326 (2020).

    CAS  Google Scholar 

  140. Liu, X. et al. Power generation from ambient humidity using protein nanowires. Nature 578, 550–554 (2020).

    CAS  PubMed  Google Scholar 

  141. Tan, J. et al. Self-sustained electricity generator driven by the compatible integration of ambient moisture adsorption and evaporation. Nat. Commun. 13, 3643 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Huang, Y. et al. Interface-mediated hygroelectric generator with an output voltage approaching 1.5 volts. Nat. Commun. 9, 4166 (2018).

    PubMed  PubMed Central  Google Scholar 

  143. Zhao, F., Cheng, H., Zhang, Z., Jiang, L. & Qu, L. Direct power generation from a graphene oxide film under moisture. Adv. Mater. 27, 4351–4357 (2015).

    CAS  PubMed  Google Scholar 

  144. Xu, T. et al. An efficient polymer moist-electric generator. Energy Environ. Sci. 12, 972–978 (2019).

    CAS  Google Scholar 

  145. Woods, J. et al. Humidity’s impact on greenhouse gas emmision from ari conditioning. Joule 6, 726–741 (2022).

    CAS  Google Scholar 

  146. Gluesenkamp, K. & Nawaz, K. Separate sensible and latent cooling: Carnot limits and system taxonomy. Int. J. Refrig. 127, 128–136 (2021).

    Google Scholar 

  147. Lange, E. & Schwartz, E. Lösungs- und verdünnungswärmen von salzen von der äussersten verdünnung bis zur sättigung: IV. Lithinmbromid. Z. Phys. Chem. 133U, 129–150 (1928).

    Google Scholar 

  148. Garzón-Tovar, L., Pérez-Carvajal, J., Imaz, I. & Maspoch, D. Composite salt in porous metal–organic frameworks for adsorption heat transformation. Adv. Funct. Mater. 27, 1606424 (2017).

    Google Scholar 

  149. Solovyeva, M., Krivosheeva, I., Gordeeva, L. & Aristov, Y. MIL-160 as an adsorbent for atmospheric water harvesting. Energies 14, 3586 (2021).

    CAS  Google Scholar 

  150. Muñoz Sabater, J. ERA5-Land Monthly Averaged Data from 1981 to Present (Copernicus Climate Change Service Climate Data Store, 2022); https://doi.org/10.24381/cds.68d2bb30

Download references

Acknowledgements

The authors thank the King Abdullah University of Science and Technology for very generous financial support

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peng Wang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Water thanks Ruzhu Wang and Qiang Fu for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, R., Wang, P. Sorbents, processes and applications beyond water production in sorption-based atmospheric water harvesting. Nat Water 1, 573–586 (2023). https://doi.org/10.1038/s44221-023-00099-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44221-023-00099-0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing