Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Solar-driven efficient heterogeneous subminute water disinfection nanosystem assembled with fingerprint MoS2

Abstract

Although heterogeneous water disinfection can avoid secondary pollution and other shortcomings in homogeneous systems, its low disinfection efficiency seriously hinders its development. Here we successfully address the aforementioned issues of heterogeneous disinfection by developing discrete nanoflakes of (Al2O3@v-MoS2)/Cu/Fe3O4. Three exciting features are integrated into such a novel structure: bifacial vertically aligned nanofingerprint MoS2 grown on both sides of the light-transparent Al2O3 nanoflakes that can largely absorb sunlight, where both sides can operate simultaneously; a Cu-MoS2 junction that enhances charge separation for the efficient generation of reactive oxygen species; and magnetic Fe3O4 nanoparticles that have magnetic separation capability and conveniently regenerate after disinfection. The (Al2O3@v-MoS2)/Cu/Fe3O4 nanostructures reported herein exhibit outstanding water disinfection with thorough inactivation of over 5.7 log10 colony-forming units ml−1 Escherichia coli within 1 min in real sunlight (the system thermal effect has little impact on disinfection performances) as well as facile separation and stable long cycle reuse, demonstrating broad application prospects.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The synthesis and disinfection operation schematic of (Al2O3@v-MoS2)/Cu/Fe3O4.
Fig. 2: Characterizations of Al2O3@v-MoS2 and (Al2O3@v-MoS2)/Cu.
Fig. 3: Disinfection performance and principle of (Al2O3@v-MoS2)/Cu system.
Fig. 4: Recyclable subminute sunlight disinfection of (Al2O3@v-MoS2)/Cu/Fe3O4.

Similar content being viewed by others

Data availability

All data of this study are presented in the article and its supplementary information. Source data are provided with this paper. The source data and relevant data that support the findings can also be accessed through the figshare repository and are freely available for download (https://doi.org/10.6084/m9.figshare.22094465).

References

  1. Ferraro, P. J. & Prasse, C. C. Reimagining safe drinking water on the basis of twenty-first-century science. Nat. Sustain. 4, 1032–1037 (2021).

    Article  Google Scholar 

  2. Chu, C., Ryberg, E. C., Loeb, S. K., Suh, M.-J. & Kim, J.-H. Water disinfection in rural areas demands unconventional solar technologies. Acc. Chem. Res. 52, 1187–1195 (2019).

    Article  CAS  PubMed  Google Scholar 

  3. World Health Organization. Waterborne disease related to unsafe water and sanitation. http://www.who.int/sustainable-development/housing/health-risks/waterborne-disease/en/ (2018).

  4. Chen, Y. et al. Advanced oxidation processes for water disinfection: features, mechanisms and prospects. Chem. Eng. J. 409, 128207–128228 (2021).

    Article  CAS  Google Scholar 

  5. La Rosa, G., Bonadonna, L., Lucentini, L., Kenmoe, S. & Sufredini, E. Coronavirus in water environments: pccurrence, persistence and concentration methods—a scoping review. Water Res. 179, 115899 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Bogler, A. et al. Rethinking wastewater risks and monitoring in light of the COVID-19 pandemic. Nat. Sustain. 3, 981–990 (2020).

    Article  Google Scholar 

  7. Mathieu, J., Yu, P., Zuo, P., Da Silva, M. L. B. & Alvarez, P. J. J. Going viral: emerging opportunities for phage-based bacterial control in water treatment and reuse. Acc. Chem. Res. 52, 849–857 (2019).

    Article  CAS  PubMed  Google Scholar 

  8. Zhang, J. L. et al. Guanidyl-functionalized graphene/polysulfone mixed matrix ultrafiltration membrane with superior permselective, antifouling and antibacterial properties for water treatment. J. Colloid Interface Sci. 540, 295–305 (2019).

    Article  CAS  PubMed  Google Scholar 

  9. Chen, W. et al. Silver nanowire-modified filter with controllable silver ion release for point-of-use disinfection. Environ. Sci. Technol. 53, 7504–7512 (2019).

    Article  CAS  PubMed  Google Scholar 

  10. Lee, H. R. et al. Antimicrobial effects of microwave plasma-activated water with skin protective effect for novel disinfectants in pandemic era. Sci. Rep. 12, 5968–5981 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Zhang, S. H., Ye, C. S., Lin, H. R., Lv, L. & Yu, X. UV disinfection induces a VBNC state in Escherichia coli and Pseudomonas aeruginosa. Environ. Sci. Technol. 49, 1721–1728 (2015).

    Article  CAS  PubMed  Google Scholar 

  12. Atkinson, A. J., Apul, O. G., Schneider, O., Garcia-Segura, S. & Westerhoff, P. Nanobubble technologies offer opportunities to improve water treatment. Acc. Chem. Res. 52, 1196–1205 (2019).

    Article  CAS  PubMed  Google Scholar 

  13. Pak, G. et al. Comparison of antibiotic resistance removal efficiencies using ozone disinfection under different pH and suspended solids and humic substance concentrations. Environ. Sci. Technol. 50, 7590–7600 (2016).

    Article  CAS  PubMed  Google Scholar 

  14. Yan, H. et al. Recyclable and reusable direct Z-scheme heterojunction CeO2/TiO2 nanotube arrays for photocatalytic water disinfection. Appl. Catal. B 291, 120096–120104 (2021).

    Article  CAS  Google Scholar 

  15. Hindiyeh, M. & Ali, A. Investigating the efficiency of solar energy system for drinking water disinfection. Desalination 259, 208–215 (2010).

    Article  CAS  Google Scholar 

  16. McGuigan, K. G. et al. Solar water disinfection (SODIS): a review from bench-top to roof-top. J. Hazard. Mater. 235–236, 29–46 (2012).

    Article  PubMed  Google Scholar 

  17. Matsunaga, T., Tomoda, R., Nakajima, T. & Wake, H. Photoelectrochemical disinfection of microbial cells by semiconductor powders. FEMS Microbiol. Lett. 29, 211–214 (1985).

    Article  CAS  Google Scholar 

  18. Fernandez-Ibanez, P. et al. Solar photocatalytic disinfection of water using titanium dioxide graphene composites. Chem. Eng. J. 261, 36–44 (2015).

    Article  CAS  Google Scholar 

  19. Du, J. et al. Uncovering the mechanism of novel AgInS2 nanosheets/TiO2 nanobelts composites for photocatalytic remediation of combined pollution. Appl. Catal. B 259, 118062 (2019).

    Article  CAS  Google Scholar 

  20. Ma, S. L., Zhan, S. H., Jia, Y. N., Shi, J. & Jia, Q. X. Enhanced disinfection application of Ag-modified g-C3N4 composite under visible light. Appl. Catal. B 186, 77–87 (2016).

    Article  CAS  Google Scholar 

  21. Teng, Z. et al. Edge-functionalized g-C3N4 nanosheets as a highly efficient metal-free photocatalyst for safe drinking water. Chem 5, 664–680 (2019).

    Article  CAS  Google Scholar 

  22. Wang, J. et al. ‘Nano Killers’ activation by permonosulfate enables efficient anaerobic microorganisms disinfection. J. Hazard. Mater. 440, 129742 (2022).

    Article  CAS  PubMed  Google Scholar 

  23. Lopez-Sanchez, O., Lembke, D., Kayci, M., Radenovic, A. & Kis, A. Ultrasensitive photodetectors based on monolayer MoS2. Nat. Nanotechnol. 8, 497–501 (2013).

    Article  CAS  PubMed  Google Scholar 

  24. Xia, F., Wang, H., Xiao, D., Dubey, M. & Ramasubramaniam, A. Two dimensional material nanophotonics. Nat. Photon. 8, 899–907 (2014).

    Article  CAS  Google Scholar 

  25. Gong, Y. J. et al. Vertical and in-plane heterostructures from WS2/MoS2 monolayers. Nat. Mater. 13, 1135–1142 (2014).

    Article  CAS  PubMed  Google Scholar 

  26. Zhang, J. S. et al. Reversible and selective ion intercalation through the top surface of few-layer MoS2. Nat. Commun. 9, 5289–5297 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Wang, H., Yuan, H., Hong, S. S., Li, Y. & Cui, Y. Physical and chemical tuning of two-dimensional transition metal dichalcogenides. Chem. Soc. Rev. 44, 2664–2680 (2015).

    Article  CAS  PubMed  Google Scholar 

  28. Jaramillo, T. F. et al. Identification of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts. Science 317, 100–102 (2007).

    Article  CAS  PubMed  Google Scholar 

  29. Mak, K. F., Lee, C., Hone, J., Shan, J. & Heinz, T. F. Atomically thin MoS2: a new direct-gap semiconductor. Phys. Rev. Lett. 105, 136805–136808 (2010).

    Article  PubMed  Google Scholar 

  30. Liu, C. et al. Rapid water disinfection using vertically aligned MoS2 nanofilms and visible light. Nat. Nanotechnol. 11, 1098–1104 (2016).

    Article  CAS  PubMed  Google Scholar 

  31. Attri, P. et al. Generation mechanism of hydroxyl radical species and its lifetime prediction during the plasmainitiated ultraviolet (UV) photolysis. Sci. Rep. 5, 9332–9339 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Deng, J. et al. Multiscale structural and electronic control of molybdenum disulfide foam for highly efficient hydrogen production. Nat. Commun. 8, 14430–14438 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kong, D. et al. Synthesis of MoS2 and MoSe2 films with vertically aligned layers,. Nano Lett. 13, 1341–1347 (2013).

    Article  CAS  PubMed  Google Scholar 

  34. Wang, H. et al. Electrochemical tuning of vertically aligned MoS2 nanofilms and its application in improving hydrogen evolution reaction,. Proc. Natl Acad. Sci. USA 110, 19701–19706 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Gong, Y. et al. Spatially controlled doping of two-dimensional SnS2 through intercalation for electronics. Nat. Nanotechnol. 13, 294–299 (2018).

    Article  CAS  PubMed  Google Scholar 

  36. Zhu, G. et al. Tuning thermal conductivity in molybdenum disulfide by electrochemical intercalation,. Nat. Commun. 7, 13211–13220 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Erb, R. M., Libanori, R., Rothfuchs, N. & Studart, A. R. Composites reinforced in three dimensions by using low magnetic gields. Science 335, 199–204 (2012).

    Article  CAS  PubMed  Google Scholar 

  38. Liu, C. et al. Static electricity powered copper oxide nanowire microbicidal electroporation for water disinfection. Nano Lett. 14, 5603–5608 (2014).

    Article  CAS  PubMed  Google Scholar 

  39. Bai, H. W., Liu, Z. Y. & Sun, D. D. Hierarchical ZnO/Cu ‘corn-like’ materials with high photodegradation and antibacterial capability under visible light. Phys. Chem. Chem. Phys. 13, 6205–6210 (2011).

    Article  CAS  PubMed  Google Scholar 

  40. El Badawy, A. M. et al. Surface charge-dependent toxicity of silver nanoparticles. Environ. Sci. Technol. 45, 283–287 (2011).

    Article  CAS  PubMed  Google Scholar 

  41. Gao, P., Ng, K. & Sun, D. D. Sulfonated graphene oxide-ZnO-Ag photocatalyst for fast photodegradation and disinfection under visible light. J. Hazard. Mater. 262, 826–835 (2013).

    Article  CAS  PubMed  Google Scholar 

  42. Wang, W. J. et al. Visible-light-driven photocatalytic inactivation of E. coli K-12 by bismuth vanadate nanotubes: bactericidal performance and mechanism. Environ. Sci. Technol. 46, 4599–4606 (2012).

    Article  CAS  PubMed  Google Scholar 

  43. Wang, W. J., Yu, J. C., Xia, D. H., Wong, P. K. & Li, Y. C. Graphene and g-C3N nanosheets co-wrapped elemental α-sulfur as a novel metal-free heterojunction photocatalyst for bacterial inactivation under visible-light. Environ. Sci. Technol. 47, 8724–8732 (2013).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the US Department of Energy, Basic Energy Sciences, Materials Sciences and Engineering Division, under contract DE-AC02-76SF00515. We acknowledge the Stanford facilities, Stanford Nanocharacterization Laboratory and Soft & Hybrid Materials for characterization. We thank A. Boehm for assistance with the biology laboratory and facilities. We thank G. Li for his help with the ICP–MS test. We also thank Y. Zhou from Shiyanjia Lab (www.shiyanjia.com) for the electron paramagnetic resonance analysis and J. Xie from Shanghai Tech University for UV photoelectron spectroscopy measurements.

Author information

Authors and Affiliations

Authors

Contributions

T.W. and B.L. contributed equally to this work. T.W. and Y.C. developed the concept. T.W., B.L. and C.L. synthesized the samples and conducted the disinfection measurements and material characterizations. T.W. completed the material synthesis. J.W. helped with the magnetic modification. A.Y. helped with the Raman measurements. K.L. and F.S. helped with the SEM and XPS measurements. Z.L. helped with the XRD measurements. J.Z. helped with the TEM measurements. G.C. analysed the data. T.W., Y.C., H.Y.H. and A.P. co-wrote the paper. All the authors discussed the whole paper.

Corresponding author

Correspondence to Yi Cui.

Ethics declarations

Competing interests

The authors declare no competing financial interests. Readers are welcome to comment on the online version of the paper.

Peer review

Peer review information

Nature Water thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Notes 1–4, Figs. 1–18, Tables 1 and 2 and References 1–10.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, T., Liu, B., Liu, C. et al. Solar-driven efficient heterogeneous subminute water disinfection nanosystem assembled with fingerprint MoS2. Nat Water 1, 462–470 (2023). https://doi.org/10.1038/s44221-023-00079-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44221-023-00079-4

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing