Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Wetting and drying trends under climate change

Abstract

The geography and timing of changes in water availability under climate change are of considerable societal interest. Characterizing these changes in a robust and meaningful manner, however, has not been easy. In the past decade, studies have engaged two provocative hypotheses to explain and predict large-scale trends in water availability. One hypothesis holds that there will be increased contrasts in available water, as wet places become wetter and dry places become drier. Another hypothesis states that there will be global aridification, as widespread increases in evapotranspiration overwhelm changes in precipitation in most terrestrial regions. There is an extensive and sometimes contentious literature on the evidence for each. In some cases, these debates reflect direct disagreement, but the appearance of disagreement is exaggerated by the diversity of methods and terminologies employed in different studies. Herein we examine the applicability and limits of both hypotheses across different frameworks, scales and contexts, yielding insights on hydrologic change and the future of water availability.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Components of the general atmospheric circulation.
Fig. 2: Processes involved in meteorological, hydrological and agroecological aridification.

Similar content being viewed by others

References

  1. Douville, H. et al. in IPCC Climate Change 2021: The Physical Science Basis (eds Masson-Delmotte, V. et al.) 1055–12010 (Cambridge Univ. Press, 2021).

  2. Seneviratne, S. I. et al. in IPCC Climate Change 2021: The Physical Science Basis (eds Masson-Delmotte, V. et al.) 1513–1766 (Cambridge Univ. Press, 2021).

  3. Held, I. M. & Soden, B. J. Robust responses of the hydrological cycle to global warming. J. Clim. 19, 5686–5699 (2006).

    Article  Google Scholar 

  4. Chou, C., Neelin, J. D., Chen, C.-A. & Tu, J.-Y. Evaluating the ‘rich-get-richer’ mechanism in tropical precipitation change under global warming. J. Clim. 22, 1982–2005 (2009).

    Article  Google Scholar 

  5. Seager, R., Naik, N. & Vecchi, G. A. Thermodynamic and dynamic mechanisms for large-scale changes in the hydrological cycle in response to global warming. J. Clim. 23, 4651–4668 (2010).

    Article  Google Scholar 

  6. Cook, B. I., Smerdon, J. E., Seager, R. & Coats, S. Global warming and 21st century drying. Clim. Dyn. 43, 2607–2627 (2014).

    Article  Google Scholar 

  7. Feng, S. & Fu, Q. Expansion of global drylands under a warming climate. Atmos. Chem. Phys. 13, 10081–10094 (2013).

    Article  CAS  Google Scholar 

  8. Fu, Q. & Feng, S. Responses of terrestrial aridity to global warming. J. Geophys. Res. Atmos. 119, 7863–7875 (2014).

    Article  Google Scholar 

  9. Scheff, J. & Frierson, D. M. W. Scaling potential evapotranspiration with greenhouse warming. J. Clim. 27, 1539–1558 (2014).

    Article  Google Scholar 

  10. IPCC: Summary for Policymakers. In Climate Change 2021: The Physical Science Basis (eds Masson-Delmotte, V. et al.) (Cambridge Univ. Press, 2021).

  11. Liu, C., Allan, R. P. & Huffman, G. J. Co-variation of temperature and precipitation in CMIP5 models and satellite observations. Geophys. Res. Lett. 39, 13 (2012).

    Google Scholar 

  12. Seager, R. & Naik, N. A mechanisms-based approach to detecting recent anthropogenic hydroclimate change. J. Clim. 25, 236–261 (2012).

    Article  Google Scholar 

  13. Lau, W. K.-M., Wu, H.-T. & Kim, K.-M. A canonical response of precipitation characteristics to global warming from CMIP5 models. Geophys. Res. Lett. 40, 3163–3169 (2013).

    Article  Google Scholar 

  14. Liu, C. & Allan, R. P. Observed and simulated precipitation responses in wet and dry regions 1850–2100. Environ. Res. Lett. 8, 034002 (2013).

    Article  Google Scholar 

  15. Polson, D., Hegerl, G. C., Allan, R. P. & Sarojini, B. B. Have greenhouse gases intensified the contrast between wet and dry regions? Geophys. Res. Lett. 40, 4783–4787 (2013).

    Article  CAS  Google Scholar 

  16. Wu, H.-T. J. & Lau, W. K.-M. Detecting climate signals in precipitation extremes from TRMM (1998–2013)—increasing contrast between wet and dry extremes during the ‘global warming hiatus’. Geophys. Res. Lett. 43, 1340–1348 (2016).

    Article  Google Scholar 

  17. Polson, D., Hegerl, G. C. & Solomon, S. Precipitation sensitivity to warming estimated from long island records. Environ. Res. Lett. 11, 074024 (2016).

    Article  Google Scholar 

  18. Greve, P. et al. Global assessment of trends in wetting and drying over land. Nat. Geosci. 7, 716–721 (2014).

    Article  CAS  Google Scholar 

  19. Greve, P. & Seneviratne, S. I. Assessment of future changes in water availability and aridity. Geophys. Res. Lett. 42, 5493–5499 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Byrne, M. P. & O’Gorman, P. A. The response of precipitation minus evapotranspiration to climate warming: why the ‘wet-get-wetter, dry-get-drier’ scaling does not hold over land. J. Clim. 28, 8078–8092 (2015).

    Article  Google Scholar 

  21. Roderick, M. L., Sun, F., Lim, W. H. & Farquhar, G. D. A general framework for understanding the response of the water cycle to global warming over land and ocean. Hydrol. Earth Syst. Sci. 18, 1575–1589 (2014).

    Article  Google Scholar 

  22. Yang, T., Ding, J., Liu, D., Wang, X. & Wang, T. Combined use of multiple drought indices for global assessment of dry gets drier and wet gets wetter paradigm. J. Clim. 32, 737–748 (2019).

    Article  Google Scholar 

  23. Kumar, S., Allan, R. P., Zwiers, F., Lawrence, D. M. & Dirmeyer, P. A. Revisiting trends in wetness and dryness in the presence of internal climate variability and water limitations over land. Geophys. Res. Lett. 42, 10,867–10,875 (2015).

    Article  Google Scholar 

  24. Li, Y., Chen, Y. & Li, Z. Dry/wet pattern changes in global dryland areas over the past six decades. Glob. Planet. Change 178, 184–192 (2019).

    Article  Google Scholar 

  25. Feng, H. & Zhang, M. Global land moisture trends: drier in dry and wetter in wet over land. Sci. Rep. 5, 18018 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Chou, C. et al. Increase in the range between wet and dry season precipitation. Nat. Geosci. 6, 263–267 (2013).

    Article  CAS  Google Scholar 

  27. Dunning, C. M., Black, E. & Allan, R. P. Later wet seasons with more intense rainfall over Africa under future climate change. J. Clim. 31, 9719–9738 (2018).

    Article  Google Scholar 

  28. Lan, C.-W., Lo, M.-H., Chen, C.-A. & Yu, J.-Y. The mechanisms behind changes in the seasonality of global precipitation found in reanalysis products and CMIP5 simulations. Clim. Dyn. 53, 4173–4187 (2019).

    Article  Google Scholar 

  29. Zhang, Y. & Fueglistaler, S. Mechanism for increasing tropical rainfall unevenness with global warming. Geophys. Res. Lett. 46, 14836–14843 (2019).

    Article  Google Scholar 

  30. Konapala, G., Mishra, A. K., Wada, Y. & Mann, M. E. Climate change will affect global water availability through compounding changes in seasonal precipitation and evaporation. Nat. Commun. 11, 3044 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Murray-Tortarolo, G., Jaramillo, V. J., Maass, M., Friedlingstein, P. & Sitch, S. The decreasing range between dry- and wet- season precipitation over land and its effect on vegetation primary productivity. PLoS ONE 12, e0190304 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Hajek, O. L. & Knapp, A. K. Shifting seasonal patterns of water availability: ecosystem responses to an unappreciated dimension of climate change. New Phytol. 233, 119–125 (2022).

    Article  PubMed  Google Scholar 

  33. Marvel, K. et al. Observed and projected changes to the precipitation annual cycle. J. Clim. 30, 4983–4995 (2017).

    Article  Google Scholar 

  34. Padrón, R. S. et al. Observed changes in dry-season water availability attributed to human-induced climate change. Nat. Geosci. 13, 477–481 (2020).

    Article  Google Scholar 

  35. Polson, D. & Hegerl, G. C. Strengthening contrast between precipitation in tropical wet and dry regions. Geophys. Res. Lett. 44, 365–373 (2017).

    Article  Google Scholar 

  36. Schurer, A. P., Ballinger, A. P., Friedman, A. R. & Hegerl, G. C. Human influence strengthens the contrast between tropical wet and dry regions. Environ. Res. Lett. 15, 104026 (2020).

    Article  Google Scholar 

  37. Elbaum, E. et al. Uncertainty in projected changes in precipitation minus evaporation: dominant role of dynamic circulation changes and weak role for thermodynamic changes. Geophys. Res. Lett. 49, e2022GL097725 (2022).

    Article  Google Scholar 

  38. Ma, J. et al. Responses of the tropical atmospheric circulation to climate change and connection to the hydrological cycle. Annu. Rev. Earth Planet. Sci. 46, 549–580 (2018).

    Article  CAS  Google Scholar 

  39. Allen, M. R. & Ingram, W. J. Constraints on future changes in climate and the hydrologic cycle. Nature 419, 228–232 (2002).

    Article  CAS  PubMed  Google Scholar 

  40. Bretherton, C. S. & Sobel, A. H. A simple model of a convectively coupled walker circulation using the weak temperature gradient approximation. J. Clim. 15, 2907–2920 (2002).

    Article  Google Scholar 

  41. O’Gorman, P. A. & Singh, M. S. Vertical structure of warming consistent with an upward shift in the middle and upper troposphere. Geophys. Res. Lett. 40, 1838–1842 (2013).

    Article  Google Scholar 

  42. Ma, J., Xie, S.-P. & Kosaka, Y. Mechanisms for tropical tropospheric circulation change in response to global warming. J. Clim. 25, 2979–2994 (2012).

    Article  Google Scholar 

  43. Ma, J. & Yu, J.-Y. Paradox in South Asian summer monsoon circulation change: lower tropospheric strengthening and upper tropospheric weakening. Geophys. Res. Lett. 41, 2934–2940 (2014).

    Article  Google Scholar 

  44. Qu, X. & Huang, G. The global warming-induced South Asian high change and its uncertainty. J. Clim. 29, 2259–2273 (2016).

    Article  Google Scholar 

  45. Andrews, T., Forster, P. M., Boucher, O., Bellouin, N. & Jones, A. Precipitation, radiative forcing and global temperature change. Geophys. Res. Lett. 37, 14 (2010).

    Article  Google Scholar 

  46. Frieler, K., Meinshausen, M., Schneider von Deimling, T., Andrews, T. & Forster, P. Changes in global-mean precipitation in response to warming, greenhouse gas forcing and black carbon. Geophys. Res. Lett. 38, 4 (2011).

    Article  Google Scholar 

  47. Vecchi, G. A. et al. Weakening of tropical Pacific atmospheric circulation due to anthropogenic forcing. Nature 441, 73–76 (2006).

    Article  CAS  PubMed  Google Scholar 

  48. Giorgi, F. et al. Higher hydroclimatic intensity with global warming. J. Clim. 24, 5309–5324 (2011).

    Article  Google Scholar 

  49. Vecchi, G. A. & Soden, B. J. Global warming and the weakening of the tropical circulation. J. Clim. 20, 4316–4340 (2007).

    Article  Google Scholar 

  50. Byrne, M. P., Pendergrass, A. G., Rapp, A. D. & Wodzicki, K. R. Response of the Intertropical Convergence Zone to climate change: location, width, and strength. Curr. Clim. Change Rep. 4, 355–370 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Chung, E.-S. et al. Reconciling opposing Walker circulation trends in observations and model projections. Nat. Clim. Change 9, 405–412 (2019).

    Article  Google Scholar 

  52. Gulev, S. K. et al. in IPCC Climate Change 2021: The Physical Science (eds Masson-Delmotte, V. et al.) 287–422 (Cambridge Univ. Press, 2021).

  53. Eyring, V. et al. in IPCC Climate Change 2021: The Physical Science Basis (eds Masson-Delmotte, V. et al.) 423–552 (Cambridge Univ. Press, 2021).

  54. He, J. & Soden, B. J. A re-examination of the projected subtropical precipitation decline. Nat. Clim. Change 7, 53–57 (2017).

    Article  Google Scholar 

  55. Tuel, A. & Eltahir, Ea. B. Why is the Mediterranean a climate change hot spot? J. Clim. 33, 5829–5843 (2020).

    Article  Google Scholar 

  56. Seager, R. et al. Climate variability and change of Mediterranean-type climates. J. Clim. 32, 2887–2915 (2019).

    Article  Google Scholar 

  57. Grise, K. M. & Polvani, L. M. Understanding the time scales of the tropospheric circulation response to abrupt CO2 forcing in the Southern Hemisphere: seasonality and the role of the stratosphere. J. Clim. 30, 8497–8515 (2017).

    Article  Google Scholar 

  58. Bony, S. et al. Robust direct effect of carbon dioxide on tropical circulation and regional precipitation. Nat. Geosci. 6, 447–451 (2013).

    Article  CAS  Google Scholar 

  59. Chadwick, R., Good, P., Andrews, T. & Martin, G. Surface warming patterns drive tropical rainfall pattern responses to CO2 forcing on all timescales. Geophys. Res. Lett. 41, 610–615 (2014).

    Article  Google Scholar 

  60. Ceppi, P., Zappa, G., Shepherd, T. G. & Gregory, J. M. Fast and slow components of the extratropical atmospheric circulation response to CO2 forcing. J. Clim. 31, 1091–1105 (2018).

    Article  Google Scholar 

  61. Zappa, G., Ceppi, P. & Shepherd, T. G. Time-evolving sea-surface warming patterns modulate the climate change response of subtropical precipitation over land. Proc. Natl Acad. Sci. USA 117, 4539–4545 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Biasutti, M. et al. Global energetics and local physics as drivers of past, present and future monsoons. Nat. Geosci. 11, 392–400 (2018).

    Article  CAS  Google Scholar 

  63. Trenberth, K. E., Stepaniak, D. P. & Caron, J. M. The global monsoon as seen through the divergent atmospheric circulation. J. Clim. 13, 3969–3993 (2000).

    Article  Google Scholar 

  64. Bordoni, S. & Schneider, T. Monsoons as eddy-mediated regime transitions of the tropical overturning circulation. Nat. Geosci. 1, 515–519 (2008).

    Article  CAS  Google Scholar 

  65. Singh, D. Tug of war on rainfall changes. Nat. Clim. Change 6, 20–22 (2016).

    Article  Google Scholar 

  66. An, Z. et al. Global monsoon dynamics and climate change. Annu. Rev. Earth Planet. Sci. 43, 29–77 (2014).

    CAS  Google Scholar 

  67. Kitoh, A. et al. Monsoons in a changing world: a regional perspective in a global context. J. Geophys. Res. Atmos. 118, 3053–3065 (2013).

    Article  Google Scholar 

  68. Hsu, P., Li, T., Murakami, H. & Kitoh, A. Future change of the global monsoon revealed from 19 CMIP5 models. J. Geophys. Res. Atmos. 118, 1247–1260 (2013).

    Article  Google Scholar 

  69. Wang, B. et al. Monsoons climate change assessment. Bull. Am. Meteorol. Soc. 102, E1–E19 (2021).

    Article  Google Scholar 

  70. Lee, J.-Y. & Wang, B. Future change of global monsoon in the CMIP5. Clim. Dyn. 42, 101–119 (2014).

    Article  Google Scholar 

  71. Jin, C., Wang, B. & Liu, J. Future changes and controlling factors of the eight regional monsoons projected by CMIP6 models. J. Clim. 33, 9307–9326 (2020).

    Article  Google Scholar 

  72. Wang, B., Jin, C. & Liu, J. Understanding future change of global monsoons projected by CMIP6 models. J. Clim. 33, 6471–6489 (2020).

    Article  Google Scholar 

  73. Bombardi, R. J. & Boos, W. R. Explaining globally inhomogeneous future changes in monsoons using simple moist energy diagnostics. J. Clim. 34, 8615–8634 (2021).

    Article  Google Scholar 

  74. Liu, J. et al. Centennial variations of the global monsoon precipitation in the last millennium: results from ECHO-G model. J. Clim. 22, 2356–2371 (2009).

    Article  Google Scholar 

  75. Colorado-Ruiz, G., Cavazos, T., Salinas, J. A., De Grau, P. & Ayala, R. Climate change projections from Coupled Model Intercomparison Project phase 5 multi-model weighted ensembles for mexico, the North American monsoon, and the mid-summer drought region. Int. J. Climatol. 38, 5699–5716 (2018).

    Article  Google Scholar 

  76. Boos, W. R. & Pascale, S. Mechanical forcing of the North American monsoon by orography. Nature 599, 611–615 (2021).

    Article  CAS  PubMed  Google Scholar 

  77. Neelin, J. D. et al. Precipitation extremes and water vapor. Curr. Clim. Change Rep. 8, 17–33 (2022).

    Article  Google Scholar 

  78. Luong, T. M. et al. The more extreme nature of North American monsoon precipitation in the Southwestern United States as revealed by a historical climatology of simulated severe weather events. J. Appl. Meteorol. Climatol. 56, 2509–2529 (2017).

    Article  Google Scholar 

  79. Prein, A. F. et al. The future intensification of hourly precipitation extremes. Nat. Clim. Change 7, 48–52 (2017).

    Article  Google Scholar 

  80. Aguilar, E. et al. Changes in precipitation and temperature extremes in Central America and northern South America, 1961–2003. J. Geophys. Res. Atmos. 110, D23107 (2005).

    Article  Google Scholar 

  81. Park, C.-E. et al. Keeping global warming within 1.5 °C constrains emergence of aridification. Nat. Clim. Change 8, 70–74 (2018).

    Article  Google Scholar 

  82. Huang, J., Yu, H., Guan, X., Wang, G. & Guo, R. Accelerated dryland expansion under climate change. Nat. Clim. Change 6, 166–171 (2016).

    Article  Google Scholar 

  83. Sherwood, S. & Fu, Q. A drier future? Science 343, 737–739 (2014).

    Article  CAS  PubMed  Google Scholar 

  84. Lin, L., Gettelman, A., Fu, Q. & Xu, Y. Simulated differences in 21st century aridity due to different scenarios of greenhouse gases and aerosols. Climatic Change 146, 407–422 (2018).

    Article  CAS  Google Scholar 

  85. Cook, B. I. et al. Twenty-first century drought projections in the CMIP6 forcing scenarios. Earths Future 8, e2019EF001461 (2020).

    Article  Google Scholar 

  86. Berg, A. et al. Land–atmosphere feedbacks amplify aridity increase over land under global warming. Nat. Clim. Change 6, 869–874 (2016).

    Article  Google Scholar 

  87. Zhou, S. et al. Soil moisture–atmosphere feedbacks mitigate declining water availability in drylands. Nat. Clim. Change 11, 38–44 (2021).

    Article  Google Scholar 

  88. Roderick, M. L., Greve, P. & Farquhar, G. D. On the assessment of aridity with changes in atmospheric CO2. Water Resour. Res. 51, 5450–5463 (2015).

    Article  CAS  Google Scholar 

  89. Vicente-Serrano, S. M., McVicar, T. R., Miralles, D. G., Yang, Y. & Tomas-Burguera, M. Unraveling the influence of atmospheric evaporative demand on drought and its response to climate change. WIREs Clim. Change 11, e632 (2020).

    Article  Google Scholar 

  90. Dai, A., Zhao, T. & Chen, J. Climate change and drought: a precipitation and evaporation perspective. Curr. Clim. Change Rep. 4, 301–312 (2018).

    Article  Google Scholar 

  91. Scheff, J. & Frierson, D. M. W. Terrestrial aridity and its response to greenhouse warming across CMIP5 climate models. J. Clim. 28, 5583–5600 (2015).

    Article  Google Scholar 

  92. Joshi, M. M., Gregory, J. M., Webb, M. J., Sexton, D. M. H. & Johns, T. C. Mechanisms for the land/sea warming contrast exhibited by simulations of climate change. Clim. Dyn. 30, 455–465 (2008).

    Article  Google Scholar 

  93. Schewe, J. et al. Multimodel assessment of water scarcity under climate change. Proc. Natl Acad. Sci. USA 111, 3245–3250 (2014).

    Article  CAS  PubMed  Google Scholar 

  94. Huang, J. et al. Dryland climate change: recent progress and challenges. Rev. Geophys. 55, 719–778 (2017).

    Article  Google Scholar 

  95. Fu, Q., Lin, L., Huang, J., Feng, S. & Gettelman, A. Changes in terrestrial aridity for the period 850–2080 from the Community Earth System Model. J. Geophys. Res. Atmospheres 121, 2857–2873 (2016).

    Article  Google Scholar 

  96. Cook, B. I., Ault, T. R. & Smerdon, J. E. Unprecedented 21st century drought risk in the American southwest and central plains. Sci. Adv. 1, e1400082 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  97. Zhao, T. & Dai, A. The magnitude and causes of global drought changes in the twenty-first century under a low–moderate emissions scenario. J. Clim. 28, 4490–4512 (2015).

    Article  Google Scholar 

  98. Dai, A. Drought under global warming: a review. WIREs Clim. Change 2, 45–65 (2011).

    Article  Google Scholar 

  99. Zhao, T. & Dai, A. Uncertainties in historical changes and future projections of drought. Part II: model-simulated historical and future drought changes. Climatic Change 144, 535–548 (2017).

    Article  Google Scholar 

  100. Lehner, F. et al. Projected drought risk in 1.5 °C and 2 °C warmer climates. Geophys. Res. Lett. 44, 7419–7428 (2017).

    Article  Google Scholar 

  101. Berg, A. & Sheffield, J. Climate change and drought: the soil moisture perspective. Curr. Clim. Change Rep. 4, 180–191 (2018).

    Article  Google Scholar 

  102. Peterson, T. C., Golubev, V. S. & Groisman, P. Y. Evaporation losing its strength. Nature 377, 687–688 (1995).

    Article  CAS  Google Scholar 

  103. Brutsaert, W. & Parlange, M. B. Hydrologic cycle explains the evaporation paradox. Nature 396, 30–30 (1998).

    Article  CAS  Google Scholar 

  104. Hobbins, M. T., Ramírez, J. A. & Brown, T. C. Trends in pan evaporation and actual evapotranspiration across the conterminous U.S.: paradoxical or complementary? Geophys. Res. Lett. 31, 13 (2004).

    Article  Google Scholar 

  105. Lawrimore, J. H. & Peterson, T. C. Pan evaporation trends in dry and humid regions of the United States. J. Hydrometeorol. 1, 543–546 (2000).

    Article  Google Scholar 

  106. Stephens, C. M., McVicar, T. R., Johnson, F. M. & Marshall, L. A. Revisiting pan evaporation trends in Australia a decade on. Geophys. Res. Lett. 45, 11,164–11,172 (2018).

    Article  Google Scholar 

  107. Pour, S. H., Wahab, A. K. A., Shahid, S. & Ismail, Z. B. Changes in reference evapotranspiration and its driving factors in peninsular Malaysia. Atmos. Res. 246, 105096 (2020).

    Article  Google Scholar 

  108. Mozny, M. et al. Past (1971–2018) and future (2021–2100) pan evaporation rates in the Czech Republic. J. Hydrol. 590, 125390 (2020).

    Article  Google Scholar 

  109. Yuan, W. et al. Increased atmospheric vapor pressure deficit reduces global vegetation growth. Sci. Adv. 5, eaax1396 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Anabalón, A. & Sharma, A. On the divergence of potential and actual evapotranspiration trends: an assessment across alternate global datasets. Earths Future 5, 905–917 (2017).

    Article  Google Scholar 

  111. Salzmann, U. et al. Climate and environment of a Pliocene warm world. Palaeogeogr. Palaeoclimatol. Palaeoecol. 309, 1–8 (2011).

    Article  Google Scholar 

  112. Behl, R. J. Glacial demise and methane’s rise. Proc. Natl Acad. Sci. USA 108, 5925–5926 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Gerhart, L. M. & Ward, J. K. Plant responses to low [CO2] of the past. New Phytol. 188, 674–695 (2010).

    Article  PubMed  Google Scholar 

  114. Scheff, J., Seager, R., Liu, H. & Coats, S. Are glacials dry? Consequences for paleoclimatology and for greenhouse warming. J. Clim. 30, 6593–6609 (2017).

    Article  Google Scholar 

  115. Greve, P., Roderick, M. L. & Seneviratne, S. I. Simulated changes in aridity from the last glacial maximum to 4×CO2. Environ. Res. Lett. 12, 114021 (2017).

    Article  Google Scholar 

  116. Sheffield, J. & Wood, E. F. Projected changes in drought occurrence under future global warming from multi-model, multi-scenario, IPCC AR4 simulations. Clim. Dyn. 31, 79–105 (2008).

    Article  Google Scholar 

  117. Berg, A., Sheffield, J. & Milly, P. C. D. Divergent surface and total soil moisture projections under global warming. Geophys. Res. Lett. 44, 236–244 (2017).

    Article  Google Scholar 

  118. Milly, P. C. D. & Dunne, K. A. Potential evapotranspiration and continental drying. Nat. Clim. Change 6, 946–949 (2016).

    Article  Google Scholar 

  119. Maidment, D. R. Handbook of Hydrology (McGraw-Hill Education, 1993).

  120. Allen, R., Pereira, L., Raes, D. & Smith, M. FAO Irrigation and Drainage Paper No. 56 26–40 (FAO, 1998).

  121. Xiang, K., Li, Y., Horton, R. & Feng, H. Similarity and difference of potential evapotranspiration and reference crop evapotranspiration—a review. Agric. Water Manag. 232, 106043 (2020).

    Article  Google Scholar 

  122. Swann, A. L. S., Hoffman, F. M., Koven, C. D. & Randerson, J. T. Plant responses to increasing CO2 reduce estimates of climate impacts on drought severity. Proc. Natl Acad. Sci. USA 113, 10019–10024 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Ainsworth, E. A. & Long, S. P. What have we learned from 15 years of free-air CO2 enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO2. New Phytol. 165, 351–372 (2005).

    Article  PubMed  Google Scholar 

  124. Mccarthy, H. et al. Temporal dynamics and spatial variability in the enhancement of canopy leaf area under elevated atmospheric CO2. Glob. Change Biol. 13, 2479–2497 (2007).

    Article  Google Scholar 

  125. Norby, R. J. & Zak, D. R. Ecological lessons from free-air CO2 enrichment (FACE) experiments. Annu. Rev. Ecol. Evol. Syst. 42, 181–203 (2011).

    Article  Google Scholar 

  126. Campbell, J. E. et al. Large historical growth in global terrestrial gross primary production. Nature 544, 84–87 (2017).

    Article  CAS  PubMed  Google Scholar 

  127. De Kauwe, M. G. et al. Forest water use and water use efficiency at elevated CO2: a model-data intercomparison at two contrasting temperate forest FACE sites. Glob. Change Biol. 19, 1759–1779 (2013).

    Article  Google Scholar 

  128. Guerrieri, R. et al. Disentangling the role of photosynthesis and stomatal conductance on rising forest water-use efficiency. Proc. Natl Acad. Sci. USA 116, 16909–16914 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Lemordant, L., Gentine, P., Stéfanon, M., Drobinski, P. & Fatichi, S. Modification of land–atmosphere interactions by CO2 effects: implications for summer dryness and heat wave amplitude. Geophys. Res. Lett. 43, 10,240–10,248 (2016).

    Article  CAS  Google Scholar 

  130. Leuzinger, S. & Körner, C. Water savings in mature deciduous forest trees under elevated CO2. Glob. Change Biol. 13, 2498–2508 (2007).

    Article  Google Scholar 

  131. Betts, R. A. et al. Projected increase in continental runoff due to plant responses to increasing carbon dioxide. Nature 448, 1037–1041 (2007).

    Article  CAS  PubMed  Google Scholar 

  132. Seneviratne, S. I. et al. Investigating soil moisture–climate interactions in a changing climate: a review. Earth Sci. Rev. 99, 125–161 (2010).

    Article  CAS  Google Scholar 

  133. Donohue, R. J., Roderick, M. L., McVicar, T. R. & Farquhar, G. D. Impact of CO2 fertilization on maximum foliage cover across the globe’s warm, arid environments. Geophys. Res. Lett. 40, 3031–3035 (2013).

    Article  CAS  Google Scholar 

  134. Ukkola, A. M. et al. Reduced streamflow in water-stressed climates consistent with CO2 effects on vegetation. Nat. Clim. Change 6, 75–78 (2016).

    Article  Google Scholar 

  135. Yang, Y., Donohue, R. J., McVicar, T. R., Roderick, M. L. & Beck, H. E. Long-term CO2 fertilization increases vegetation productivity and has little effect on hydrological partitioning in tropical rainforests. J. Geophys. Res. Biogeosci. 121, 2125–2140 (2016).

    Article  Google Scholar 

  136. Mankin, J. S., Seager, R., Smerdon, J. E., Cook, B. I. & Williams, A. P. Mid-latitude freshwater availability reduced by projected vegetation responses to climate change. Nat. Geosci. 12, 983–988 (2019).

    Article  CAS  Google Scholar 

  137. Singh, A., Kumar, S., Akula, S., Lawrence, D. M. & Lombardozzi, D. L. Plant growth nullifies the effect of increased water-use efficiency on streamflow under elevated CO2 in the southeastern United States. Geophys. Res. Lett. 47, e2019GL086940 (2020).

    Article  Google Scholar 

  138. Zeng, Z. et al. Impact of Earth greening on the terrestrial water cycle. J. Clim. 31, 2633–2650 (2018).

    Article  Google Scholar 

  139. Zeng, Z., Peng, L. & Piao, S. Response of terrestrial evapotranspiration to Earth’s greening. Curr. Opin. Environ. Sustain. 33, 9–25 (2018).

    Article  Google Scholar 

  140. Forzieri, G. et al. Increased control of vegetation on global terrestrial energy fluxes. Nat. Clim. Change 10, 356–362 (2020).

    Article  Google Scholar 

  141. Zhang, Y. et al. Multi-decadal trends in global terrestrial evapotranspiration and its components. Sci. Rep. 6, 19124 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Wei, Z. et al. Revisiting the contribution of transpiration to global terrestrial evapotranspiration. Geophys. Res. Lett. 44, 2792–2801 (2017).

    Article  Google Scholar 

  143. Cui, J. et al. Vegetation response to rising CO2 amplifies contrasts in water resources between global wet and dry land areas. Geophys. Res. Lett. 48, e2021GL094293 (2021).

    Article  CAS  Google Scholar 

  144. Lemordant, L., Gentine, P., Swann, A. S., Cook, B. I. & Scheff, J. Critical impact of vegetation physiology on the continental hydrologic cycle in response to increasing CO2. Proc. Natl Acad. Sci. USA 115, 4093–4098 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Zarakas, C. M., Swann, A. L. S., Laguë, M. M., Armour, K. C. & Randerson, J. T. Plant physiology increases the magnitude and spread of the transient climate response to CO2 in CMIP6 Earth system models. J. Clim. 33, 8561–8578 (2020).

    Article  Google Scholar 

  146. Farrior, C. E., Rodriguez-Iturbe, I., Dybzinski, R., Levin, S. A. & Pacala, S. W. Decreased water limitation under elevated CO2 amplifies potential for forest carbon sinks. Proc. Natl Acad. Sci. USA 112, 7213–7218 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Morgan, J. A. et al. C4 grasses prosper as carbon dioxide eliminates desiccation in warmed semi-arid grassland. Nature 476, 202–205 (2011).

    Article  CAS  PubMed  Google Scholar 

  148. Lu, X., Wang, L. & McCabe, M. F. Elevated CO2 as a driver of global dryland greening. Sci. Rep. 6, 20716 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Lian, X. et al. Multifaceted characteristics of dryland aridity changes in a warming world. Nat. Rev. Earth Environ. 2, 232–250 (2021).

    Article  Google Scholar 

  150. Green, J. K. et al. Regionally strong feedbacks between the atmosphere and terrestrial biosphere. Nat. Geosci. 10, 410–414 (2017).

    Article  CAS  Google Scholar 

  151. Koster, R. D. et al. Regions of strong coupling between soil moisture and precipitation. Science 305, 1138–1140 (2004).

    Article  CAS  PubMed  Google Scholar 

  152. Zaitchik, B. F., Evans, J. P., Geerken, R. A. & Smith, R. B. Climate and vegetation in the Middle East: interannual variability and drought feedbacks. J. Clim. 20, 3924–3941 (2007).

    Article  Google Scholar 

  153. Zaitchik, B. F., Santanello, J. A., Kumar, S. V. & Peters-Lidard, C. D. Representation of soil moisture feedbacks during drought in NASA Unified WRF (NU-WRF). J. Hydrometeorol. 14, 360–367 (2013).

    Article  Google Scholar 

  154. Osman, M., Zaitchik, B. F. & Winstead, N. S. Cascading drought-heat dynamics during the 2021 southwest United States heatwave. Geophys. Res. Lett. 49, e2022GL099265 (2022).

    Article  Google Scholar 

  155. Zaitchik, B. F., Macalady, A. K., Bonneau, L. R. & Smith, R. B. Europe’s 2003 heat wave: a satellite view of impacts and land–atmosphere feedbacks. Int. J. Climatol. 26, 743–769 (2006).

    Article  Google Scholar 

  156. Meng, X. H., Evans, J. P. & McCabe, M. F. The impact of observed vegetation changes on land–atmosphere feedbacks during drought. J. Hydrometeorol. 15, 759–776 (2014).

    Article  Google Scholar 

  157. Ghatak, D., Zaitchik, B., Hain, C. & Anderson, M. The role of local heating in the 2015 Indian heat wave. Sci. Rep. 7, 7707 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  158. Chai, R. et al. Human-caused long-term changes in global aridity. npj Clim. Atmos. Sci. 4, 65 (2021).

    Article  Google Scholar 

  159. te Wierik, S. A., Cammeraat, E. L. H., Gupta, J. & Artzy-Randrup, Y. A. Reviewing the impact of land use and land-use change on moisture recycling and precipitation patterns. Water Resour. Res. 57, e2020WR029234 (2021).

    Article  Google Scholar 

  160. Guimberteau, M. et al. Impacts of future deforestation and climate change on the hydrology of the Amazon Basin: a multi-model analysis with a new set of land-cover change scenarios. Hydrol. Earth Syst. Sci. 21, 1455–1475 (2017).

    Article  Google Scholar 

  161. Giorgi, F., Raffaele, F. & Coppola, E. The response of precipitation characteristics to global warming from climate projections. Earth Syst. Dyn. 10, 73–89 (2019).

    Article  Google Scholar 

  162. Allan, R. P. et al. Advances in understanding large-scale responses of the water cycle to climate change. Ann. N. Y. Acad. Sci. 1472, 49–75 (2020).

    Article  PubMed  Google Scholar 

  163. Ficklin, D. L., Null, S. E., Abatzoglou, J. T., Novick, K. A. & Myers, D. T. Hydrological intensification will increase the complexity of water resource management. Earths Future 10, e2021EF002487 (2022).

    Article  Google Scholar 

  164. Wainwright, C. M., Black, E. & Allan, R. P. Future changes in wet and dry season characteristics in CMIP5 and CMIP6 simulations. J. Hydrometeorol. 22, 2339–2357 (2021).

    Google Scholar 

  165. Qiao, L., Zuo, Z. & Xiao, D. Evaluation of soil moisture in CMIP6 simulations. J. Clim. 35, 779–800 (2022).

    Article  Google Scholar 

  166. Tuel, A. & Eltahir, E. A. B. Mechanisms of European summer drying under climate change. J. Clim. 34, 8913–8931 (2021).

    Google Scholar 

  167. Rowell, D. P. Projected midlatitude continental summer drying: North America versus Europe. J. Clim. 22, 2813–2833 (2009).

    Article  Google Scholar 

  168. Overpeck, J. T. & Udall, B. Climate change and the aridification of North America. Proc. Natl Acad. Sci. USA 117, 11856–11858 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Martin, J. T. et al. Increased drought severity tracks warming in the United States’ largest river basin. Proc. Natl Acad. Sci. USA 117, 11328–11336 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Cook, B. I., Mankin, J. S. & Anchukaitis, K. J. Climate change and drought: from past to future. Curr. Clim. Change Rep. 4, 164–179 (2018).

    Article  Google Scholar 

  171. Rodell, M. & Li, B. Changing intensity of hydroclimatic extreme events revealed by GRACE and GRACE-FO. Nat. Water 1, 241–248 (2023).

  172. Pryor, S. C., Sullivan, R. C. & Wright, T. Quantifying the roles of changing albedo, emissivity, and energy partitioning in the impact of irrigation on atmospheric heat content. J. Appl. Meteorol. Climatol. 55, 1699–1706 (2016).

    Article  Google Scholar 

  173. Keune, J., Sulis, M., Kollet, S., Siebert, S. & Wada, Y. Human water use impacts on the strength of the continental sink for atmospheric water. Geophys. Res. Lett. 45, 4068–4076 (2018).

    Article  Google Scholar 

  174. Nie, W. et al. Irrigation water demand sensitivity to climate variability across the contiguous United States. Water Resour. Res. 57, 2020WR027738 (2021).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

B.F.Z. proposed the concept for the review paper. B.F.Z., M.R., M.B. and S.I.S. wrote and edited the paper.

Corresponding author

Correspondence to Benjamin F. Zaitchik.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Water thanks Theodore Shepherd, Elfatih Eltahir and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zaitchik, B.F., Rodell, M., Biasutti, M. et al. Wetting and drying trends under climate change. Nat Water 1, 502–513 (2023). https://doi.org/10.1038/s44221-023-00073-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44221-023-00073-w

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing