Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

High-molecular-weight by-products of chlorine disinfection

Abstract

Although drinking water chlorination has reduced the incidence of waterborne disease, the reactions of chlorine with organic matter can lead to the formation of >700 halogenated disinfection by-products (DBPs). Epidemiological studies have linked the consumption of chlorinated drinking water with bladder cancer. With studies indicating that the one- and two-carbon-atom DBPs of current interest account for only ~16% of disinfected water cytotoxicity, there is a need to identify toxicity drivers within the poorly characterized higher-molecular-weight (more than two carbon atoms) DBP fraction. In this Review, we outline the current knowledge regarding this fraction and discuss novel analytical approaches to characterizing the much wider variety of structures that it contains. We detail the products formed from the reactions of chlorine with different categories of precursor, including the characteristics of the elemental formulae of products identified by high-resolution mass spectrometry, the halogenated aromatic DBPs formed from precursors in pristine waters and the products derived from biopolymer-bound monomers in algal- or wastewater-impacted waters. Finally, we discuss the key challenges for research into this important, but until recently, mostly overlooked by-product fraction.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Sources of biopolymers in water supplies.
Fig. 2: Conversion of biomolecular precursors to high-molecular-weight DBP intermediates and then to C1 and C2 DBPs.
Fig. 3: Formation of non-halogenated and halogenated aromatic DBPs during the chlorination of terrigenous DOM.
Fig. 4: By-products formed during the chlorination of monomers bound within biopolymers.
Fig. 5: Novel high-molecular-weight DBPs measured in disinfected waters.

Similar content being viewed by others

References

  1. History of drinking water treatment. CDC https://www.cdc.gov/healthywater/drinking/history.html (2022).

  2. Rook, J. J. Formation of haloforms during chlorination of natural water. Water Treat. Exam. 23, 234–243 (1974).

    Google Scholar 

  3. Bellar, T. A., Lichtenberg, J. J. & Kroner, R. C. The occurrence of organohalides in chlorinated drinking waters. J. Am. Water Works Assoc. 66, 703–706 (1974).

    Article  CAS  Google Scholar 

  4. Villanueva, C. M. et al. Bladder cancer and exposure to water disinfection by-products through ingestion, bathing, showering, and swimming in pools. Am. J. Epidemiol. 154, 148–156 (2007).

    Google Scholar 

  5. Evlampidou, I. et al. Trihalomethanes in drinking water and bladder cancer burden in the European Union. Environ. Health Perspect. 128, 17001 (2020).

    Article  PubMed  Google Scholar 

  6. Weisman, R. J. et al. Estimating national exposures and potential bladder cancer cases associated with chlorination DBPs in US drinking water. Environ. Health Perspect. 130, 87002 (2022).

    Article  CAS  PubMed  Google Scholar 

  7. Bove, G. E., Rogerson, P. A. & Vena, J. E. Case control study of the geographic variability of exposure to disinfectant byproducts and risk for rectal cancer. Int. J. Health Geogr. 6, 18 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  8. National Primary Drinking Water Regulations (United States Environmental Protection Agency, 2022); https://www.epa.gov/ground-water-and-drinking-water/national-primary-drinking-water-regulations#Byproducts

  9. Directive (EU) 2020/2184 of the European Parliament and of the Council of 16 December 2020 on the Quality of Water Intended for Human Consumption (European Union, 2020); https://eur-lex.europa.eu/eli/dir/2020/2184/oj

  10. Richardson, S. D. in Encyclopedia of Environmental Health (Ed. Nriagu, J. O.) 110−136 (Elsevier, 2011).

  11. Li, X.-F. & Mitch, W. A. Drinking water disinfection byproducts (DBPs) and human health effects: multidisciplinary challenges and opportunities. Environ. Sci. Technol. 52, 1681–1689 (2018). This article summarizes trends in current DBP research, with a focus on C1 and C2 byproducts.

    Article  CAS  PubMed  Google Scholar 

  12. Wagner, E. D. & Plewa, M. J. CHO cytotoxicity and genotoxicity analyses of disinfection by-products: an updated review. J. Environ. Sci. 58, 64–76 (2017).

    Article  CAS  Google Scholar 

  13. Zeng, T., Plewa, M. J. & Mitch, W. A. N-nitrosamines and halogenated disinfection byproducts in US Full Advanced Treatment trains for potable reuse. Water Res. 101, 176–186 (2016).

    Article  CAS  PubMed  Google Scholar 

  14. Szczuka, A. et al. Regulated and unregulated halogenated disinfection byproduct formation from chlorination of saline groundwater. Water Res. 122, 633–644 (2017).

    Article  CAS  PubMed  Google Scholar 

  15. Plewa, M. J., Wagner, E. D. & Richardson, S. D. TIC-Tox: a preliminary discussion on identifying the forcing agents of DBP-mediated toxicity of disinfected water. J. Environ. Sci. 58, 208–216 (2017).

    Article  CAS  Google Scholar 

  16. Chuang, Y. H., Szczuka, A. & Mitch, W. A. Comparison of toxicity-weighted disinfection byproduct concentrations in potable reuse waters to conventional drinking waters as a new approach to assess the quality of advanced treatment train waters. Environ. Sci. Technol. 53, 3729–3738 (2019).

    Article  CAS  PubMed  Google Scholar 

  17. Allen, J. A. et al. By-product drivers of cytotoxicity in US drinking water: should other DBPs be considered for regulation? Environ. Sci. Technol. 56, 392–402 (2022).

    Article  CAS  PubMed  Google Scholar 

  18. Lau, S. S. et al. Assessing additivity of cytotoxicity associated with disinfection byproducts in potable reuse and conventional drinking waters. Environ. Sci. Technol. 54, 5729–5736 (2020).

    Article  CAS  PubMed  Google Scholar 

  19. Stalter, D., O’Malley, E., von Gunten, U. & Escher, B. I. Mixture effects of drinking water disinfection by-products: implications for risk assessment. Environ. Sci. Water Res. Technol. 6, 2341–2351 (2020).

    Article  CAS  Google Scholar 

  20. Furst, K. E., Bolorinos, J. & Mitch, W. A. Use of trihalomethanes as a surrogate for haloacetonitrile exposure introduces misclassification bias. Water Res. X 11, 100089 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Shah, A. D., Krasner, S. W., Chen, T. C.-F., von Gunten, U. & Mitch, W. A. Tradeoffs in disinfection byproduct formation associated with precursor pre-oxidation for control of nitrosamine formation. Environ. Sci. Technol. 46, 4809–4818 (2012). This article shows that different disinfectants promote the formation of different classes of byproducts, indicating the need to identify toxicity drivers to ensure that disinfection systems minimize overall toxicity.

    Article  CAS  PubMed  Google Scholar 

  22. Krasner, S. W. et al. Occurrence of a new generation of disinfection byproducts. Environ. Sci. Technol. 40, 7175–7185 (2006).

    Article  CAS  PubMed  Google Scholar 

  23. Lau, S. S. et al. Toxicological assessment of potable reuse and conventional drinking waters. Nat. Sustain. 6, 39–46 (2023). This article demonstrates that the high-molecular-weight fraction of byproducts contributes more to cytotoxicity than the C1 and C2 byproducts of current research interest.

    Article  Google Scholar 

  24. Li, Y. et al. Volatile DBPs contributed marginally to the developmental toxicity of drinking water DBP mixtures against Platynereis dumerilii. Chemosphere 252, 126611 (2020).

    Article  CAS  PubMed  Google Scholar 

  25. Wu, Q.-Y. et al. Non-volatile disinfection byproducts are far more toxic to mammalian cells than volatile byproducts. Water Res. 183, 116080 (2020).

    Article  CAS  PubMed  Google Scholar 

  26. Stalter, D. et al. Sample enrichment for bioanalytical assessment of disinfected drinking water: concentrating the polar, the volatiles, and the unknowns. Environ. Sci. Technol. 50, 6495–6505 (2016). This paper illustrates the difficulty associated with retaining the conventional volatile DBPs during sample enrichment, yet indicates that they are a minor contributor to the induction of the oxidative stress response in mammalian cells compared with the poorly characterized higher-molecular-weight DBP fraction.

    Article  CAS  PubMed  Google Scholar 

  27. Hebert, A. et al. Bioanalytical assessment of adaptive stress responses in drinking water: a predictive tool to differentiate between micropollutants and disinfection by-products. Water Res. 132, 340–349 (2018).

    Article  CAS  PubMed  Google Scholar 

  28. Zhai, H. & Zhang, X. Formation and decomposition of new and unknown polar brominated disinfection byproducts during chlorination. Environ. Sci. Technol. 45, 2194–2201 (2011).

    Article  CAS  PubMed  Google Scholar 

  29. MacCarthy, P. in Humic Substances: Structures, Models and Functions (eds Ghabbour, E. A. & Davies, G.) 19–30 (Royal Society of Chemistry, 2001).

  30. Amon, R. M. The Vienna School of Marine Biology: A Tribute to Jörg Ott 1–18 (Facultas Verlag-Wien, 2002).

  31. Sutton, R. & Sposito, G. Molecular structure in soil humic substances: the new view. Environ. Sci. Technol 39, 9009–9015 (2005).

    Article  CAS  PubMed  Google Scholar 

  32. Lehmann, J. & Kleber, M. The contentious nature of soil organic matter. Nature 528, 60–68 (2015).

    Article  CAS  PubMed  Google Scholar 

  33. Patriarca, C. et al. Investigating the ionization of dissolved organic matter by electrospray. Anal. Chem. 92, 14210–14218 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. ten Have, R. & Teunissen, P. J. M. Oxidative mechanisms involved in lignin degradation by white-rot fungi. Chem. Rev. 101, 3397–3414 (2001).

    Article  PubMed  Google Scholar 

  35. Organic Chemistry. Section 5.1. LibreTexts https://chem.libretexts.org/Bookshelves/Organic_Chemistry/Map%3A_Organic_Chemistry_(Smith)/05%3A_Stereochemistry/5.01%3A_Starch_and_Cellulose (2022).

  36. Nguyen, Q. N., Cloutier, A., Achim, A. & Stevanovic, T. Fuel properties of sugar maple and yellow birch wood in relation with tree vigor. Bioresources 11, 3275–3288 (2016).

    Article  CAS  Google Scholar 

  37. Lasek, O., Rajtar, P., Malec, A., Bielatowicz, W. & Przybylo, M. Ensiling of maple leaves and its use in winter nutrition of mantled guereza (Colobus guereza). Zoo Biol. 40, 436–443 (2021).

    Article  CAS  PubMed  Google Scholar 

  38. Crombie, W. M. Fatty acids in chloroplasts and leaves. J. Exp. Bot. 9, 254–261 (1958).

    Article  CAS  Google Scholar 

  39. Brock, T. D., Madigan, M. T., Martinko, J. M. & Parker, J. Biology of Microorganisms 7th edn, 118 (Prentice-Hall, 1994).

  40. Hayakawa, K. et al. Fatty acid composition as an indicator of physiological condition of the cyanobacterium Microcystis aeruginosa. Limnology 3, 29–35 (2002).

    Article  CAS  Google Scholar 

  41. Ephraim, A., Arlabosse, P., Nzihou, A., Minh, D. P. & Sharrock, P. in Handbook on Characterization of Biomass, Biowaste and Related By-products 25 (Ed. Nizhou, A.) (Springer, 2020).

  42. Peake, E., Baker, B. L. & Hodgson, G. W. Hydrogeochemistry of the surface waters of the Mackenzie River drainage basin, Canada—II. The contribution of amino acids, hydrocarbons and chlorins to the Beaufort Sea by the Mackenzie River system. Geochim. Cosmochim. Acta 36, 867–883 (1972).

    Article  CAS  Google Scholar 

  43. Westerhoff, P. & Mash, H. Dissolved organic nitrogen in drinking water supplies: a review. J. Water Supply Res. Technol. AQUA 51, 415–448 (2002).

    Article  CAS  Google Scholar 

  44. Dotson, A. & Westerhoff, P. Occurrence and removal of amino acids during drinking water treatment. J. Am. Water Works Assoc. 101, 101–115 (2009).

    Article  CAS  Google Scholar 

  45. Pehlivanoglu-Mantas, E. & Sedlak, D. L. Measurement of dissolved organic nitrogen forms in wastewater effluents: concentrations, size distribution and NDMA formation potential. Water Res. 42, 3890–3898 (2008).

    Article  CAS  PubMed  Google Scholar 

  46. Zhang, X., Minear, R. A. & Barrett, S. E. Characterization of high molecular weight disinfection byproducts from chlorination of humic substances with/without coagulation pretreatment using UF–SEC–ESI-MS/MS. Environ. Sci. Technol. 39, 963–972 (2005).

    Article  CAS  PubMed  Google Scholar 

  47. Zhang, X., Talley, J. W., Boggess, B., Ding, G. & Birdsell, D. Fast selective detection of polar brominated disinfection byproducts in drinking water using precursor ion scans. Environ. Sci. Technol. 42, 6598–6603 (2008).

    Article  CAS  PubMed  Google Scholar 

  48. Ding, G. & Zhang, X. A picture of polar iodinated disinfection byproducts in drinking water by (UPLC/)ESI-tqMS. Environ. Sci. Technol. 43, 9287–9293 (2009).

    Article  CAS  PubMed  Google Scholar 

  49. Yang, M., Zhang, X., Liang, Q. & Yang, B. Application of (LC/)MS/MS precursor ion scan for evaluating the occurrence, formation and control of polar halogenated DBPs in disinfected waters: a review. Water Res. 158, 322–337 (2019). This report summarizes how the precursor ion scan method could be applied to characterize polar halogenated DBPs.

    Article  CAS  PubMed  Google Scholar 

  50. Stenson, A. C., Landing, W. M., Marshall, A. G. & Cooper, W. T. Ionization and fragmentation of humic substances in electrospray ionization Fourier transform-ion cyclotron resonance mass spectrometry. Anal. Chem. 74, 4397–4409 (2002).

    Article  CAS  PubMed  Google Scholar 

  51. Rodgers, R. P. & Marshall, A. G. in Asphaltenes, Heavy Oils, and Petroleomics (eds Mullins, O. C. et al.) 63–93 (Springer, 2007).

  52. Taha, H. M. et al. The NORMAN Suspect List Exchange (NORMAN-SLE): facilitating European and worldwide collaboration on suspect screening in high resolution mass spectrometry. Environ. Sci. Eur. 34, 104 (2022).

    Article  Google Scholar 

  53. Schymanski, E. M. et al. Identifying small molecules via high resolution mass spectrometry: communicating confidence. Environ. Sci. Technol. 48, 2097–2098 (2014).

    Article  CAS  PubMed  Google Scholar 

  54. Powers, L. C. et al. Tracking the formation of new brominated disinfection by-products during the seawater desalination process. Environ. Sci. Water Res. Technol. 6, 2521–2541 (2020).

    Article  CAS  Google Scholar 

  55. Choe, J. K., Richards, D. H., Wilson, C. J. & Mitch, W. A. Degradation of amino acids and structure in model proteins and bacteriophage MS2 by chlorine, bromine and ozone. Environ. Sci. Technol. 49, 13331–13339 (2015).

    Article  CAS  PubMed  Google Scholar 

  56. Komaki, Y., Simpson, A. M.-A., Choe, J. K., Plewa, M. J. & Mitch, W. A. Chlorotyrosines versus volatile byproducts from chlorine disinfection during washing of spinach and lettuce. Environ. Sci. Technol. 52, 9361–9369 (2018).

    Article  CAS  PubMed  Google Scholar 

  57. Simpson, A. M.-A., Suh, M.-J., Plewa, M. J. & Mitch, W. A. Formation of oleic acid chlorohydrins in vegetables during post-harvest chlorine disinfection. Environ. Sci. Technol. 56, 1233–1243 (2022).

    Article  CAS  PubMed  Google Scholar 

  58. Walse, S. S., Plewa, M. J. & Mitch, W. A. Exploring amino acid side chain decomposition using enzymatic digestion and HPLC-MS: combined lysine transformations in chlorinated waters. Anal. Chem. 81, 7650–7659 (2009).

    Article  CAS  PubMed  Google Scholar 

  59. Lehninger, A. L., Nelson, D. L. & Cox, M. M. in Principles of Biochemistry 2nd edn, 510 (Worth, 1993).

  60. Pan, Y. & Zhang, X. Four groups of new aromatic halogenated disinfection byproducts: effect of bromide concentration on their formation and speciation in chlorinated drinking water. Environ. Sci. Technol. 47, 1265–1273 (2013).

    Article  CAS  PubMed  Google Scholar 

  61. Tang, H. et al. A new group of heterocyclic nitrogenous disinfection byproducts (DBPs) in drinking water: role of extraction pH in unknown DBP exploration. Environ. Sci. Technol. 55, 6764–6772 (2021).

    Article  CAS  PubMed  Google Scholar 

  62. Hu, S., Kaw, H. Y., Zhu, L. & Wang, W. Formation and cytotoxicity of halophenylacetamides: a new group of nitrogenous aromatic halogenated disinfection byproducts in drinking water. Environ. Sci. Technol. 56, 3181–3192 (2022).

    Article  CAS  PubMed  Google Scholar 

  63. Hu, S., Kaw, H. Y., Zhu, L. & Wang, W. Halohydroxybenzonitriles as a new group of halogenated aromatic DBPs in drinking water: are they of comparable risk to halonitrophenols? Water Res. 219, 118547 (2022).

    Article  CAS  PubMed  Google Scholar 

  64. Jiang, H., Kaw, H. Y., Zhu, L. & Wang, W. Halonaphthoquinones: a group of emerging disinfection byproducts of high toxicity in drinking water. Water Res. 217, 118421 (2022).

    Article  CAS  PubMed  Google Scholar 

  65. Zhang, D. et al. Identification, occurrence, and cytotoxicity of haloanilines: a new class of aromatic nitrogenous disinfection byproducts in chloraminated and chlorinated drinking water. Environ. Sci. Technol. 56, 4132–4141 (2022).

    Article  PubMed  Google Scholar 

  66. Zhao, Y., Qin, F., Boyd, J. M., Anichina, J. & Li, X.-F. Characterization and determination of chloro- and bromo-benzoquinones as new chlorination disinfection byproducts in drinking water. Anal. Chem. 82, 4599–4605 (2010).

    Article  CAS  PubMed  Google Scholar 

  67. Li, J., Wang, W., Moe, B., Wang, H. & Li, X.-F. Chemical and toxicological characterization of halobenzoquinones, an emerging class of disinfection byproducts. Chem. Res. Toxicol. 28, 306–318 (2015).

    Article  CAS  PubMed  Google Scholar 

  68. Lou, J., Lu, H., Wang, W., He, S. & Zhu, L. Quantitative identification of halo-methyl-benzoquinones as disinfection byproducts in drinking water using a pseudo-targeted LC-MS/MS method. Water Res. 218, 118466 (2022).

    Article  CAS  PubMed  Google Scholar 

  69. Jiang, J., Han, J. & Zhang, X. Nonhalogenated aromatic DBPs in drinking water chlorination: a gap between NOM and halogenated aromatic DBPs. Environ. Sci. Technol. 54, 1646–1656 (2020).

    Article  CAS  PubMed  Google Scholar 

  70. Nihemaiti, M., Le Roux, J., Hoppe-Jones, C., Reckhow, D. A. & Croué, J.-P. Formation of haloacetonitriles, haloacetamides, and nitrogenous heterocyclic byproducts by chloramination of phenolic compounds. Environ. Sci. Technol. 51, 655–663 (2017).

    Article  CAS  PubMed  Google Scholar 

  71. Han, J., Zhang, X., Jiang, J. & Li, W. How much of the total organic halogen and developmental toxicity of chlorinated drinking water might be attributed to aromatic halogenated DBPs? Environ. Sci. Technol. 55, 5906–5916 (2021).

    Article  CAS  PubMed  Google Scholar 

  72. Wang, C., Yang, X., Zheng, Q., Moe, B. & Li, X.-F. Halobenzoquinone-induced developmental toxicity, oxidative stress, and apoptosis in zebrafish embryos. Environ. Sci. Technol. 52, 10590–10598 (2018).

    Article  CAS  PubMed  Google Scholar 

  73. Yang, M. & Zhang, X. Comparative developmental toxicity of new aromatic halogenated DBPs in a chlorinated saline sewage effluent to the marine polychaete Platynereis dumerilii. Environ. Sci. Technol. 47, 10868–10876 (2013).

    Article  CAS  PubMed  Google Scholar 

  74. Liu, J. & Zhang, X. Comparative toxicity of new halophenolic DBPs in chlorinated saline wastewater effluents against a marine alga: halophenolic DBPs are generally more toxic than haloaliphatic ones. Water Res. 65, 64–72 (2014).

    Article  CAS  PubMed  Google Scholar 

  75. Yang, X., Shen, Q., Guo, W., Peng, J. & Liang, Y. Precursors and nitrogen origins of trichloronitromethane and dichloroacetonitrile during chlorination/chloramination. Chemosphere 88, 25–32 (2012).

    Article  CAS  PubMed  Google Scholar 

  76. Li, C., Gao, N., Chu, W., Bond, T. & Wei, X. Comparison of THMs and HANs formation potential from the chlorination of free and combined histidine and glycine. Chem. Eng. J. 307, 487–495 (2017).

    Article  CAS  Google Scholar 

  77. Shah, A. D. & Mitch, W. A. Halonitroalkanes, halonitriles, haloamides and N-nitrosamines: a critical review of nitrogenous disinfection byproduct (N-DBP) formation pathways. Environ. Sci. Technol. 46, 119–131 (2012).

    Article  CAS  PubMed  Google Scholar 

  78. How, Z. T., Linge, K. L., Busetti, F. & Joll, C. A. Chlorination of amino acids: reaction pathways and reaction rates. Environ. Sci. Technol. 51, 4870–4876 (2017).

    Article  CAS  PubMed  Google Scholar 

  79. Pattison, D. I. & Davies, M. J. Absolute rate constants for the reaction of hypochlorous acid with protein side chains and peptide bonds. Chem. Res. Toxicol. 14, 1453–1464 (2001).

    Article  CAS  PubMed  Google Scholar 

  80. Fox, T. C., Keefe, D. J., Scully, F. E. & Laikhter, A. Chloramines VII: chlorination of alanylphenylalanine in model solutions and in a wastewater. Environ. Sci. Technol. 31, 1979–1984 (1997).

    Article  CAS  Google Scholar 

  81. Keefe, D. J., Fox, T. C., Conyers, B. & Scully, F. E. Chloramines VI: chlorination of glycylphenylalanine in model solutions and in a wastewater. Environ. Sci. Technol. 31, 1973–1978 (1997).

    Article  CAS  Google Scholar 

  82. Hua, L.-C., Kim, E., McCurry, D. L., Huang, C. & Mitch, W. A. Novel chlorination byproducts of tryptophan: initial high-yield transformation products versus small molecule DBPs. Environ. Sci. Technol. Lett. 7, 149–155 (2020).

    Article  CAS  Google Scholar 

  83. Choe, J. K. et al. Evaluation of histidine reactivity and byproduct formation during peptide chlorination. Environ. Sci. Technol. 55, 1790–1799 (2021).

    Article  CAS  PubMed  Google Scholar 

  84. Jiang, P., Huang, G., Jmaiff Blackstock, L. K., Zhang, J. & Li, X.-F. Ascorbic acid assisted high performance liquid chromatography mass spectrometry differentiation of isomeric C-chloro- and N-chloro-tyrosyl peptides in water. Anal. Chem. 89, 13642–13650 (2017).

    Article  CAS  PubMed  Google Scholar 

  85. Huang, G., Jiang, P. & Li, X.-F. Mass spectrometry identification of N-chlorinated dipeptides in drinking water. Anal. Chem. 89, 4204–4209 (2017).

    Article  CAS  PubMed  Google Scholar 

  86. Huang, G., Jiang, P., Jmaiff Blackstock, L. K., Tian, D. & Li, X.-F. Formation and occurrence of iodinated tyrosyl dipeptides in disinfected drinking water. Environ. Sci. Technol. 52, 4218–4226 (2018).

    Article  CAS  PubMed  Google Scholar 

  87. Huang, G. et al. Formation, identification, and occurrence of new bromo- and mixed halo-tyrosyl dipeptides in chloraminated water. Environ. Sci. Technol. 53, 3672–3680 (2019). This study identified peptide-based byproducts from disinfectant reactions with biomolecules.

    Article  CAS  PubMed  Google Scholar 

  88. Gibson, T. M., Haley, J., Righton, M. & Watts, C. D. Chlorination of fatty acids during water treatment disinfection: reactivity and product identification. Environ. Technol. Lett. 7, 365–372 (1986).

    Article  CAS  Google Scholar 

  89. Winterbourne, C. C., van den Berg, J. J. M., Roitman, E. & Kuypers, F. A. Chlorohydrin formation from unsaturated fatty acids reacted with hypochlorous acid. Arch. Biochem. Biophys. 296, 547–555 (1992).

    Article  Google Scholar 

  90. Gonsior, M. et al. The chemodiversity of algal dissolved organic matter from lysed Microcystis aeruginosa cells and its ability to form disinfection by-products during chlorination. Water Res. 155, 300–309 (2019).

    Article  CAS  PubMed  Google Scholar 

  91. Gould, J. P., Richards, J. T. & Miles, M. G. The kinetics and primary products of uracil chlorination. Water Res. 18, 205–212 (1984).

    Article  CAS  Google Scholar 

  92. Stanley, N. R., Pattison, D. I. & Hawkins, C. L. Ability of hypochlorous acid and N-chloramines to chlorinate DNA and its constituents. Chem. Res. Toxicol. 23, 1293–1302 (2010).

    Article  CAS  PubMed  Google Scholar 

  93. Zhang, H. F. et al. Study on transformation of natural organic matter in source water during chlorination and its chlorinated products using ultrahigh resolution mass spectrometry. Environ. Sci. Technol. 46, 4396–4402 (2012).

    Article  CAS  PubMed  Google Scholar 

  94. Zhang, H. F. et al. Characterization of low molecular weight dissolved natural organic matter along the treatment train of a waterworks using Fourier transform ion cyclotron resonance mass spectrometry. Water Res. 46, 5197–5204 (2012).

    Article  CAS  PubMed  Google Scholar 

  95. Gonsior, M. et al. Changes in dissolved organic matter during the treatment processes of a drinking water plant in Sweden and formation of previously unknown disinfection byproducts. Environ. Sci. Technol. 48, 12714–12722 (2014).

    Article  CAS  PubMed  Google Scholar 

  96. Sanchis, J., Redondo-Hasselerharm, P. E., Villanueva, C. M. & Farré, M. J. Non targeted screening of nitrogen containing disinfection by-products in formation potential tests of river water and subsequent monitoring in tap water samples. Chemosphere 303, 135087 (2022).

    Article  CAS  PubMed  Google Scholar 

  97. Ding, G., Zhang, X., Yang, M. & Pan, Y. Formation of new brominated disinfection byproducts during chlorination of saline sewage effluents. Water Res. 47, 2710–2718 (2013).

    Article  CAS  PubMed  Google Scholar 

  98. Gong, T. & Zhang, X. Detection, identification and formation of new iodinated disinfection byproducts in chlorinated saline wastewater effluents. Water Res. 68, 77–86 (2015).

    Article  CAS  PubMed  Google Scholar 

  99. Zhang, H., Zhang, Y., Shi, Q., Zheng, H. & Yang, M. Characterization of unknown brominated disinfection byproducts during chlorination using ultrahigh resolution mass spectrometry. Environ. Sci. Technol. 48, 3112–3119 (2014).

    Article  CAS  PubMed  Google Scholar 

  100. Andersson, A. et al. Selective removal of natural organic matter during drinking water production changes the composition of disinfection by-products. Environ. Sci. Water Res. Technol. 6, 779–794 (2020).

    Article  CAS  Google Scholar 

  101. Lavonen, E. E., Gonsior, M., Tranvik, L. J., Schmitt-Kopplin, P. & Köhler, S. J. Selective chlorination of natural organic matter: identification of previously unknown disinfection byproducts. Environ. Sci. Technol. 47, 2264–2271 (2013).

    Article  CAS  PubMed  Google Scholar 

  102. Andersson, A. et al. Molecular changes among non-volatile disinfection by-products between drinking water treatment and consumer taps. Environ. Sci. Water Res. Technol. 7, 2335–2345 (2021). Using non-targeted analytical techniques, this study characterized changes in DBPs within distribution systems, which are critical to understanding consumer exposure to DBPs.

    Article  CAS  Google Scholar 

  103. Zhai, H., Zhang, X., Zhu, X., Liu, J. & Ji, M. Formation of brominated disinfection byproducts during chloramination of drinking water: new polar species and overall kinetics. Environ. Sci. Technol. 48, 2579–2588 (2014).

    Article  CAS  PubMed  Google Scholar 

  104. Zhao, Y. et al. Occurrence and formation of chloro- and bromo-benzoquinones during drinking water disinfection. Water Res. 46, 4351–4360 (2012).

    Article  CAS  PubMed  Google Scholar 

  105. Richardson, S. D. et al. Tribromopyrrole, brominated acids, and other disinfection byproducts produced by disinfection of drinking water rich in bromide. Environ. Sci. Technol. 37, 3782–3793 (2003).

    Article  CAS  PubMed  Google Scholar 

  106. Li, J., Aziz, M. T., Granger, C. O. & Richardson, S. D. Halocyclopentadienes: an emerging class of toxic DBPs in chlor(am)inated drinking water. Environ. Sci. Technol. 56, 11387–11397 (2022). This study identified a new class of >C2 DBPs using gas chromatography combined with high-resolution mass spectrometry.

    Article  CAS  PubMed  Google Scholar 

  107. Zhang, D. et al. Trace determination and occurrence of eight chlorophenylacetonitriles: an emerging class of aromatic nitrogenous disinfection byproducts in drinking water. Chemosphere 220, 858–865 (2019).

    Article  CAS  PubMed  Google Scholar 

  108. Li, C. et al. Identifying unknown by-products in drinking water using comprehensive two-dimensional gas chromatography quadrupole mass spectrometry and in silico toxicity assessment. Chemosphere 163, 535–543 (2016).

    Article  CAS  PubMed  Google Scholar 

  109. Zhang, D. et al. Occurrence and stability of chlorophenylacetonitriles: a new class of nitrogenous aromatic DBPs in chlorinated and chloraminated drinking waters. Environ. Sci. Technol. Lett. 5, 394–399 (2018).

    Article  CAS  Google Scholar 

  110. Whalen, K. E. et al. The chemical cue tetrabromopyrrole induces rapid cellular stress and mortality in phytoplankton. Sci. Rep. 8, 15498 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  111. Liberatore, H. K. et al. Identification and comparative mammalian cell cytotoxicity of new iodo-phenolic disinfection byproducts in chloraminated oil and gas wastewaters. Environ. Sci. Technol. Lett. 4, 475–480 (2017).

    Article  CAS  Google Scholar 

  112. Gonsior, M. et al. Bromination of marine dissolved organic matter following full scale electrochemical ballast water disinfection. Environ. Sci. Technol. 49, 9048–9055 (2015).

    Article  CAS  PubMed  Google Scholar 

  113. Ziegler, G., Gonsior, M., Fisher, D. J., Schmitt-Kopplin, P. & Tamburri, M. N. Formation of brominated organic compounds and molecular transformations in dissolved organic matter (DOM) after ballast water treatment with sodium dichloroisocyanurate dihydrate (DICD). Environ. Sci. Technol. 53, 8006–8016 (2019).

    Article  CAS  PubMed  Google Scholar 

  114. Zahn, D., Frömel, T. & Knepper, T. P. Halogenated methanesulfonic acids: a new class of organic micropollutants in the water cycle. Water Res. 101, 292–299 (2016). This study characterized novel byproducts from disinfectant reactions with anthropogenic contaminants in effluent organic matter.

    Article  CAS  PubMed  Google Scholar 

  115. Tang, Y. et al. Nontargeted identification of peptides and disinfection byproducts in water. J. Environ. Sci. 42, 259–266 (2016).

    Article  CAS  Google Scholar 

  116. Suh, M.-J., Hinkle, M. M., Lau, S. S. & Mitch, W. A. Chlorotyrosines and oleic acid chlorohydrins as byproducts in disinfected conventional drinking waters and potable reuse waters. Environ. Sci. Technol. Lett., https://doi.org/10.1021/acs.estlett.3c00143 (2023).

  117. Tian, D. et al. Cytotoxicity of halogenated tyrosyl compounds, an emerging class of disinfection byproducts. Chem. Res. Toxicol. 33, 1028–1035 (2020).

    Article  CAS  PubMed  Google Scholar 

  118. Wu, Y. et al. Comparative toxicity analyses from different endpoints: are new cyclic disinfection byproducts (DBPs) more toxic than common aliphatic DBPs? Environ. Sci. Technol. 56, 194–207 (2022). Comparing halogenated C1 and C2 DBPs and halogenated aromatic DBPs, this study found that C1 and C2 DBPs were more cytotoxic, while aromatic DBPs exhibited higher developmental toxicity in zebrafish embryos.

    Article  CAS  PubMed  Google Scholar 

  119. Lau, S. S., Forster, A. L., Richardson, S. D. & Mitch, W. A. Disinfection byproduct recovery during extraction and concentration in preparation for chemical analyses or toxicity assays. Environ. Sci. Technol. 55, 14136–14145 (2021).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by funding from the National Science Foundation (CBET 1935904 to W.A.M. and CBET 2042016 and 1705206 to S.D.R.) and the Research Grants Council of Hong Kong (grant nos. 16212518 and 16210221 to X.Z.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William A. Mitch.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Water thanks Maria Farré, Beate Escher and Cynthia Joll for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Fig. 1.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mitch, W.A., Richardson, S.D., Zhang, X. et al. High-molecular-weight by-products of chlorine disinfection. Nat Water 1, 336–347 (2023). https://doi.org/10.1038/s44221-023-00064-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44221-023-00064-x

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing