Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Moving from measurement to governance of shared groundwater resources

Abstract

Global groundwater resources are under strain, with cascading effects on producers, food and fibre production systems, communities and ecosystems. Investments in biophysical research have clarified the challenges, catalysed a proliferation of technological solutions and supported incentivizing individual irrigators to adjust practices. However, groundwater management is fundamentally a governance challenge. The reticence to prioritize building governance capacity represents a critical ‘blind spot’ contributing to a low return on investment for research funding with negative consequences for communities moving closer towards resource depletion. In this Perspective, we recommend shifts in research, extension and policy priorities to build polycentric governance capacity and strategic planning tools, and to re-orient priorities to sustaining aquifer-dependent communities in lieu of maximizing agricultural production at the scale of individual farm operations. To achieve these outcomes, groundwater governance needs to be not only prioritized but also democratized.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Conceptual illustration of the multiple scales of governance that influence groundwater extraction using the United States as an example.

Similar content being viewed by others

References

  1. Döll, P. et al. Impact of water withdrawals from groundwater and surface water on continental water storage variations. J. Geodyn. 59–60, 143–156 (2012).

    Article  Google Scholar 

  2. Dieter, C. A. et al. Estimated Use Of Water in the United States in 2015 US Geological Survey Circular 1441 (USGS, 2018); https://doi.org/10.3133/cir1441

  3. Siebert, S., Ewert, F., Eyshi Rezaei, E., Kage, H. & Grass, R. Impact of heat stress on crop yield—on the importance of considering canopy temperature. Environ. Res. Lett. 9, 044012 (2014).

    Article  Google Scholar 

  4. Stephan, M., Marshall, G. & McGinnis, M. in Governing Complexity: Analyzing and Applying Polycentricity (eds Thiel, A. et al.) 21–44 (Cambridge Univ. Press, 2019); https://doi.org/10.1017/9781108325721.002

  5. Steward, D. R. et al. Tapping unsustainable groundwater stores for agricultural production in the High Plains Aquifer of Kansas, projections to 2110. Proc. Natl Acad. Sci. USA 110, E3477–E3486 (2013).

    Article  CAS  Google Scholar 

  6. Haacker, E. M. K., Kendall, A. D. & Hyndman, D. W. Water level declines in the High Plains Aquifer: predevelopment to resource senescence. Groundwater 54, 231–242 (2016).

    Article  CAS  Google Scholar 

  7. Russo, T. A. & Lall, U. Depletion and response of deep groundwater to climate-induced pumping variability. Nat. Geosci. 10, 105–108 (2017).

    Article  CAS  Google Scholar 

  8. Scanlon, B. R. et al. Groundwater depletion and sustainability of irrigation in the US High Plains and Central Valley. Proc. Natl Acad. Sci. USA 109, 9320–9325 (2012).

    Article  CAS  Google Scholar 

  9. Hrozencik, R. A., Manning, D. T., Suter, J. F., Goemans, C. & Bailey, R. T. The heterogeneous impacts of groundwater management policies in the Republican River Basin of Colorado. Water Resour. Res. 53, 10757–10778 (2017).

    Article  Google Scholar 

  10. Colaizzi, P. D., Gowda, P. H., Marek, T. H. & Porter, D. O. Irrigation in the Texas High Plains: a brief history and potential reductions in demand. Irrig. Drain. 58, 257–274 (2009).

    Article  Google Scholar 

  11. Lyle, W. M. & Bordovsky, J. P. LEPA corn irrigation with limited water supplies. Trans. ASAE 38, 455–462 (1995).

    Article  Google Scholar 

  12. Chen, Y. et al. Assessment of alternative agricultural land use options for extending the availability of the Ogallala Aquifer in the Northern High Plains of Texas. Hydrology 5, 53 (2018).

    Article  Google Scholar 

  13. Rudnick, D. R. et al. Deficit irrigation management of maize in the High Plains Aquifer Region: a review. JAWRA J. Am. Water Resour. Assoc. 55, 38–55 (2019).

    Article  Google Scholar 

  14. Hao, B. et al. Grain yield, evapotranspiration, and water-use efficiency of maize hybrids differing in drought tolerance. Irrig. Sci. 37, 25–34 (2019).

    Article  Google Scholar 

  15. Chiara, C. & Marco, M. Irrigation efficiency optimization at multiple stakeholders’ levels based on remote sensing data and energy water balance modelling. Irrig. Sci. https://doi.org/10.1007/s00271-022-00780-4 (2022).

  16. Schwartz, R. C., Bell, J. M., Colaizzi, P. D., Baumhardt, R. L. & Hiltbrunner, B. A. Response of maize hybrids under limited irrigation capacities: crop water use. Agron. J. https://doi.org/10.1002/agj2.21011 (2022).

  17. Taghvaeian, S. et al. Irrigation scheduling for agriculture in the United States: the progress made and the path forward. Trans. ASABE 63, 1603–1618 (2020).

    Article  Google Scholar 

  18. Sears, L. et al. Jevons’ paradox and efficient irrigation technology. Sustainability 10, (2018).

  19. Mpanga, I. K. & Idowu, O. J. A decade of irrigation water use trends in Southwestern USA: the role of irrigation technology, best management practices, and outreach education programs. Agric. Water Manag. 243, 106438 (2021).

    Article  Google Scholar 

  20. Grafton, R. Q. et al. The paradox of irrigation efficiency. Science 361, 748–750 (2018).

    Article  CAS  Google Scholar 

  21. Cook, C. & Bakker, K. Water security: debating an emerging paradigm. Glob. Environ. Change 22, 94–102 (2012).

    Article  Google Scholar 

  22. Brewis, A. et al. Household water insecurity is strongly associated with food insecurity: evidence from 27 sites in low‐and middle‐income countries. Am. J. Hum. Biol. 32, e23309 (2020).

    Article  Google Scholar 

  23. Rosinger, A. Y. & Young, S. L. The toll of household water insecurity on health and human biology: current understandings and future directions. Wiley Interdiscip. Rev. Water 7, e1468 (2020).

    Article  Google Scholar 

  24. London, J. K. et al. Disadvantaged unincorporated communities and the struggle for water justice in California. Water Altern. 14, 520–545 (2021).

    Google Scholar 

  25. Hanak, E. et al. Water and the future of the San Joaquin Valley. Public Policy Inst. Calif. 100, (2019).

  26. Lauer, S. et al. Values and groundwater management in the Ogallala Aquifer region. J. Soil Water Conserv. 73, 593–600 (2018).

    Article  Google Scholar 

  27. Edwards, E. C. & Guilfoos, T. The economics of groundwater governance institutions across the globe. Appl. Econ. Perspect. Policy 43, 1571–1594 (2021).

    Article  Google Scholar 

  28. MacLeod, C. & Méndez-Barrientos, L. E. Groundwater management in California’s Central Valley: a focus on disadvantaged communities. Case Stud. Environ. 3, 1–13 (2019).

    Article  Google Scholar 

  29. Méndez-Barrientos, L. E. et al. Farmer participation and institutional capture in common-pool resource governance reforms. The case of groundwater management in California. Soc. Nat. Resour. 33, 1486–1507 (2020).

    Article  Google Scholar 

  30. Blythe, J. et al. The dark side of transformation: latent risks in contemporary sustainability discourse. Antipode 50, 1206–1223 (2018).

    Article  Google Scholar 

  31. Lubell, M. Governing institutional complexity: the ecology of games framework. Policy Stud. J. 41, 537–559 (2013).

    Article  Google Scholar 

  32. Berardo, R. & Lubell, M. The ecology of games as a theory of polycentricity: recent advances and future challenges. Policy Stud. J. 47, 6–26 (2019).

    Article  Google Scholar 

  33. Ostrom, E. Understanding Institutional Diversity (Princeton Univ. Press, 2009).

  34. Ostrom, E. & Basurto, X. Crafting analytical tools to study institutional change. J. Inst. Econ. 7, 317–343 (2011).

    Google Scholar 

  35. Lubell, M. & Morrison, T. H. Institutional navigation for polycentric sustainability governance. Nat. Sustain. 4, 664–671 (2021).

    Article  Google Scholar 

  36. Lauer, S. & Sanderson, M. R. Producer attitudes toward groundwater conservation in the U.S. Ogallala-High Plains. Groundwater 58, 674–680 (2020).

    Article  CAS  Google Scholar 

  37. Niles, M. T. & Wagner, C. R. H. The carrot or the stick? Drivers of California farmer support for varying groundwater management policies. Environ. Res. Commun. 1, 45001 (2019).

    Article  Google Scholar 

  38. Evans, R. G. & King, B. A. Site-specific sprinkler irrigation in a water-limited future. Trans. ASABE 55, 493–504 (2012).

    Article  Google Scholar 

  39. Sanderson, M. R. & Hughes, V. Race to the bottom (of the well): groundwater in an agricultural production treadmill. Soc. Probl. 66, 392–410 (2018).

    Article  Google Scholar 

  40. Ostrom, E. The challenge of common-pool resources. Environ. Sci. Policy Sustain. Dev. 50, 8–21 (2008).

    Article  Google Scholar 

  41. Agriculture Innovation Agenda (USDA, 2021); https://www.usda.gov/aia

  42. Partnerships for climate-smart commodities. USDA https://www.usda.gov/climate-solutions/climate-smart-commodities (2022).

  43. Closas, A. & Molle, F. Chronicle of a demise foretold: state vs. local groundwater management in Texas and the High Plains aquifer system. Water Altern. 11, 511–532 (2018).

    Google Scholar 

  44. Lubell, M., Blomquist, W. & Beutler, L. Sustainable groundwater management in California: a grand experiment in environmental governance. Soc. Nat. Resour. 33, 1447–1467 (2020).

    Article  Google Scholar 

  45. Roberts, M., Milman, A. & Blomquist, W. in Water Resilience (eds Baird, J. & Plummer, R.) 41–63 (Springer, Cham., 2021).

  46. Megdal, S. B. The role of the public and private sectors in water provision in Arizona, USA. Water Int. 37, 156–168 (2012).

    Article  Google Scholar 

  47. Desired future conditions. Texas Water Development Board https://www.twdb.texas.gov/groundwater/dfc/index.asp (2022).

  48. Schoengold, K. & Brozovic, N. The future of groundwater management in the High Plains: evolving institutions, aquifers and regulations. in. West. Econ. Forum 16, 47–53 (2018).

    Google Scholar 

  49. Factsheet H.B. 2056/S.B. 1368 (Arizona State Senate, 2021); https://www.azleg.gov/legtext/55leg/1R/summary/S.2056-1368NREW_ASENACTED.pdf

  50. Local enhanced management areas; establishment procedures; duties of chief engineer; hearing; notice; orders; review. Kansas Office of Revisor of Statutes http://www.ksrevisor.org/statutes/chapters/ch82a/082a_010_0041.html (2012).

  51. Deines, J. M., Kendall, A. D., Butler, J. J. & Hyndman, D. W. Quantifying irrigation adaptation strategies in response to stakeholder-driven groundwater management in the US High Plains Aquifer. Environ. Res. Lett. 14, 044014 (2019).

    Article  Google Scholar 

  52. California Department of Water Resources. Sustainable Groundwater Management Act (SGMA) (State of California, 2022); https://water.ca.gov/programs/groundwater-management/sgma-groundwater-management

  53. Ayres, A. B., Edwards, E. C. & Libecap, G. D. How transaction costs obstruct collective action: the case of California’s groundwater. J. Environ. Econ. Manag. 91, 46–65 (2018).

    Article  Google Scholar 

  54. Dobbin, K. B. & Lubell, M. Collaborative governance and environmental justice: disadvantaged community representation in California sustainable groundwater management. Policy Stud. J. 49, 562–590 (2021).

    Article  Google Scholar 

  55. Bruno, E. M., Hagerty, N. & Wardle, A. R. The Political Economy of Groundwater Management: Descriptive Evidence from California (National Bureau of Economic Research, 2022).

  56. Cody, K. C., Smith, S. M., Cox, M. & Andersson, K. Emergence of collective action in a groundwater commons: irrigators in the San Luis Valley of Colorado. Soc. Nat. Resour. 28, 405–422 (2015).

    Article  Google Scholar 

  57. Perez-Quesada, G. & Hendricks, N. P. Lessons from local governance and collective action efforts to manage irrigation withdrawals in Kansas. Agric. Water Manag. 247, 106736 (2021).

    Article  Google Scholar 

  58. Bopp, C., Engler, A., Jara-Rojas, R., Hunecke, C. & Melo, O. Collective actions and leadership attributes: a cluster analysis of water user associations in Chile. Water Econ. Policy 8, 2250003 (2022).

    Article  Google Scholar 

  59. Morrison, T. H. et al. The black box of power in polycentric environmental governance. Glob. Environ. Change 57, 101934 (2019).

    Article  Google Scholar 

  60. Bitterman, P., Bennett, D. A. & Secchi, S. Constraints on farmer adaptability in the Iowa-Cedar River Basin. Environ. Sci. Policy 92, 9–16 (2019).

    Article  Google Scholar 

  61. Butler, J. J. Jr., Whittemore, D. O., Wilson, B. B. & Bohling, G. C. Sustainability of aquifers supporting irrigated agriculture: a case study of the High Plains aquifer in Kansas. Water Int. 43, 815–828 (2018).

    Article  Google Scholar 

  62. Zwart, S. J. & Bastiaanssen, W. G. M. Review of measured crop water productivity values for irrigated wheat, rice, cotton and maize. Agric. Water Manag. 69, 115–133 (2004).

    Article  Google Scholar 

  63. Du, Y.-D. et al. Crop yield and water use efficiency under aerated irrigation: a meta-analysis. Agric. Water Manag. 210, 158–164 (2018).

    Article  Google Scholar 

  64. Zheng, H. et al. Water productivity of irrigated maize production systems in Northern China: a meta-analysis. Agric. Water Manag. 234, 106119 (2020).

    Article  Google Scholar 

  65. Crouch, M., Guerrero, B., Amosson, S., Marek, T. & Almas, L. Analyzing potential water conservation strategies in the Texas Panhandle. Irrig. Sci. 38, 559–567 (2020).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by USDA National Institute of Food and Agriculture award #2016-68007-25066, the National Science Foundation award #1650042, and the Ogallala Aquifer Program. We thank the full Ogallala Water project team, advisory board and engaged participants for their numerous contributions (www.ogallalawater.org).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meagan E. Schipanski.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Water thanks Eric Edwards and Sharon Megdal for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schipanski, M.E., Sanderson, M.R., Méndez-Barrientos, L.E. et al. Moving from measurement to governance of shared groundwater resources. Nat Water 1, 30–36 (2023). https://doi.org/10.1038/s44221-022-00008-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44221-022-00008-x

This article is cited by

Search

Quick links

Nature Briefing Anthropocene

Sign up for the Nature Briefing: Anthropocene newsletter — what matters in anthropocene research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Anthropocene