Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Prospects of metal recovery from wastewater and brine

Abstract

Modern technology relies on an undisrupted supply of metals, yet many metals have limited geological deposits. Recovering metals from wastewater and brine could augment metal stocks, but there is little guidance on which metals to prioritize for recovery or on the techno-economic viability of extraction processes. Here we critically assess the potential for recovering metals from wastewater and brine. We first look at which metals are critical for recovery on the basis of their supply risks and the impacts of those supply restrictions. We then assess the feasibility of recovering these metals from various water sources by estimating the required operational costs to match market prices. Next we discuss the limitations of established separation technologies that may inhibit the practicality and scalability of metal recovery from water. We conclude by highlighting materials and processes that could serve as more sustainable alternatives to metal recovery with further research and development.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Determination of which metals are critical for recovery from water.
Fig. 2: Economic assessment of metal recovery from water.
Fig. 3: Established separation methods for metal recovery.
Fig. 4: Strategies to engineer technologies and processes for metal recovery.

Similar content being viewed by others

References

  1. Graedel, T. E., Harper, E. M., Nassar, N. T., Nuss, P. & Reck, B. K. Criticality of metals and metalloids. Proc. Natl Acad. Sci. USA 112, 4257–4262 (2015).

    Article  CAS  Google Scholar 

  2. Reck, B. K. & Graedel, T. E. Challenges in metal recycling. Science 337, 690–695 (2012).

    Article  CAS  Google Scholar 

  3. Miller, K. D. et al. Mine water use, treatment, and reuse in the United States: a look at current industry practices and select case. ACS EST Eng. 2, 391–408 (2022).

    Article  CAS  Google Scholar 

  4. Northey, S., Mohr, S., Mudd, G. M., Weng, Z. & Giurco, D. Modelling future copper ore grade decline based on a detailed assessment of copper resources and mining. Resour. Conserv. Recycl. 83, 190–201 (2014).

    Article  Google Scholar 

  5. Rankin, W. J. Minerals, Metals and Sustainability: Meeting Future Material Needs (CSIRO, 2011).

  6. Elshkaki, A., Graedel, T. E., Ciacci, L. & Reck, B. K. Resource demand scenarios for the major metals. Environ. Sci. Technol. 52, 2491–24979 (2018).

    Article  CAS  Google Scholar 

  7. Nassar, N. T., Graedel, T. E. & Harper, E. M. By-product metals are technologically essential but have problematic supply. Sci. Adv. 1, e1400180 (2015). This study demonstrates that many companion metals are essential to modern technology but are particularly susceptible to supply constraints in the coming decades.

    Article  CAS  Google Scholar 

  8. Lin, S., Hatzell, M., Liu, R., Wells, G. & Xie, X. Mining resources from water. Resour. Conserv. Recycl. 175, 105853 (2021).

    Article  Google Scholar 

  9. Loganathan, P., Naidu, G. & Vigneswaran, S. Mining valuable minerals from seawater: a critical review. Environ. Sci. Water Res. Technol. 3, 37–53 (2017).

    Article  CAS  Google Scholar 

  10. Shahmansouri, A., Min, J., Jin, L. & Bellona, C. Feasibility of extracting valuable minerals from desalination concentrate: a comprehensive literature review. J. Clean. Prod. 100, 4–16 (2015).

    Article  CAS  Google Scholar 

  11. Epsztein, R., DuChanois, R. M., Ritt, C. L., Noy, A. & Elimelech, M. Towards single-species selectivity of membranes with subnanometre pores. Nat. Nanotechnol. 15, 426–436 (2020). This paper outlines how to design ion-selective membranes on the basis of principles from the K+ channel.

    Article  CAS  Google Scholar 

  12. DuChanois, R. M., Porter, C. J., Violet, C., Verduzco, R. & Elimelech, M. Membrane materials for selective ion separations at the water–energy nexus. Adv. Mater. 33, 2101312 (2021). This paper describes membrane materials that may lead to high-precision ion separations.

    Article  CAS  Google Scholar 

  13. Yang, S., Zhang, F., Ding, H., He, P. & Zhou, H. Lithium metal extraction from seawater. Joule 2, 1648–1651 (2018).

    Article  Google Scholar 

  14. Liu, C. et al. A half-wave rectified alternating current electrochemical method for uranium extraction from seawater. Nat. Energy 2, 17007 (2017).

    Article  CAS  Google Scholar 

  15. Uliana, A. A. et al. Ion-capture electrodialysis using multifunctional adsorptive membranes. Science 372, 296–299 (2021).

    Article  CAS  Google Scholar 

  16. Zou, S. & Mauter, M. S. Competing ion behavior in direct electrochemical selenite reduction. ACS EST Eng. 1, 1028–1035 (2021).

    Article  CAS  Google Scholar 

  17. Blengini, G. A. et al. Study on the EU’s List of Critical Raw Materials: Final Report (European Commission, 2020); https://op.europa.eu/en/publication-detail/-/publication/c0d5292a-ee54-11ea-991b-01aa75ed71a1/language-en

  18. Nakano, J. The Geopolitics of Critical Minerals Supply Chains (CSIS, 2021); https://www.csis.org/analysis/geopolitics-critical-minerals-supply-chains

  19. Canada’s Critical Minerals List 2021 (Government of Canada, 2021); https://www.nrcan.gc.ca/our-natural-resources/minerals-mining/critical-minerals/23414

  20. Final List of Critical Minerals 2018 (Federal Register, US Department of the Interior, 2018); https://www.federalregister.gov/documents/2018/05/18/2018-10667/final-list-of-critical-minerals-2018

  21. Australian Critical Minerals Prospectus 2021 (Australian Government, 2021); https://www.austrade.gov.au/news/publications/australian-critical-minerals-prospectus-2021

  22. Graedel, T. E., Reck, B. K. & Miatto, A. Alloy information helps prioritize material criticality lists. Nat. Commun. 13, 150 (2022).

    Article  CAS  Google Scholar 

  23. Graedel, T. E. et al. Recycling Rates of Metals—A Status Report (UNEP, 2011); https://wedocs.unep.org/handle/20.500.11822/8702

  24. Nuss, P. & Eckelman, M. J. Life cycle assessment of metals: a scientific synthesis. PLoS ONE 9, e101298 (2014). The global warming potential of mining, purifying and refining metals was determined for 63 elements.

    Article  Google Scholar 

  25. Sherwood, T. K. Mass Transfer Between Phases (Phi Lambda Upsilon, Pennsylvania State Univ., 1959).

  26. Bardi, U. Extracting minerals from seawater: an energy analysis. Sustainability 2, 980–992 (2010).

    Article  CAS  Google Scholar 

  27. Mineral Commodity Summaries 2022 (US Geological Survey, 2022); https://doi.org/10.3133/mcs2022

  28. Liu, C. et al. Lithium extraction from seawater through pulsed electrochemical intercalation. Joule 4, 1459–1469 (2020). This study applies intercalation electrodes to remove lithium from seawater with high selectivity over other interfering species.

    Article  CAS  Google Scholar 

  29. Quinby-Hunt, M. S. & Turekian, K. K. Distribution of elements in sea water. Eos 64, 130–132 (1983).

    Article  Google Scholar 

  30. Discharge Monitoring Reports (US EPA, 2022); https://echo.epa.gov/trends/loading-tool/water-pollution-search

  31. Technical Development Document for the Effluent Limitations Guidelines and Standards for the Oil and Gas Extraction Point Source Category (US EPA, 2016).

  32. An, J. W. et al. Recovery of lithium from Uyuni salar brine. Hydrometallurgy 117–118, 64–70 (2012).

    Article  Google Scholar 

  33. Warren, I. Techno-Economic Analysis of Lithium Extraction from Geothermal Brines (National Renewable Energy Laboratory, 2021); https://www.nrel.gov/docs/fy21osti/79178.pdf

  34. Development Document for Effluent Limitations Guidelines and Standards for the Centralized Waste Treatment Industry—Final (US EPA, 2000).

  35. Jain, R. et al. Recovery of gallium from wafer fabrication industry wastewaters by desferrioxamine B and E using reversed-phase chromatography approach. Water Res. 158, 203–212 (2020).

    Article  Google Scholar 

  36. Jones, E. et al. The state of desalination and brine production: a global outlook. Sci. Total Environ. 657, 1343–1356 (2019).

    Article  CAS  Google Scholar 

  37. Rene, E. R. & Lewis, A. Sustainable Heavy Metal Remediation Volume 1: Principles and Processes vol. 8 (2017).

  38. Gupta, C. K. & Krishnamurthy, N. Extractive Metallurgy of Rare Earths (CRC, 2005).

  39. Ritt, C. L. et al. Machine learning reveals key ion selectivity mechanisms in polymeric membranes with subnanometer pores. Sci. Adv. 5771, eabl5771 (2022).

    Article  Google Scholar 

  40. Helfferich, F. Ion Exchange (McGraw-Hill, 1962).

  41. SenGupta, A. K. Ion Exchange in Environmental Processes: Fundamentals, Applications and Sustainable Technology (John Wiley & Sons Ltd, 2017).

  42. Kim, D. et al. Selective extraction of rare earth elements from permanent magnet scraps with membrane solvent extraction. Environ. Sci. Technol. 49, 9452–9459 (2015).

    Article  CAS  Google Scholar 

  43. Baker, R. Membrane Technology and Applications (John Wiley & Sons Ltd, 2012).

  44. Fuller, T. F. & Harb, J. N. Electrochemical Engineering (John Wiley & Sons Ltd, 2018).

  45. Su, X. Electrochemical separations for metal recycling. Electrochem. Soc. Interface 29, 54–61 (2020).

    Article  Google Scholar 

  46. Biesheuvel, P. M., Porada, S. & Dykstra, J. E. The difference between Faradaic and non-Faradaic electrode processes. Preprint at https://arxiv.org/abs/1809.02930 (2018).

  47. Porada, S., Zhao, R., Van Der Wal, A., Presser, V. & Biesheuvel, P. M. Review on the science and technology of water desalination by capacitive deionization. Prog. Mater Sci. 58, 1388–1442 (2013).

    Article  CAS  Google Scholar 

  48. Jacobson, A. J. & Nazar, L. F. in Encyclopedia of Inorganic Chemistry (eds King, R. B. et al.) https://doi.org/10.1002/0470862106.ia098 (John Wiley & Sons Ltd, 2006).

  49. Gamaethiralalage, J. G. et al. Recent advances in ion selectivity with capacitive deionization. Energy Environ. Sci. 14, 1095–1120 (2021).

    Article  CAS  Google Scholar 

  50. Eliad, L., Salitra, G., Soffer, A. & Aurbach, D. Ion sieving effects in the electrical double layer of porous carbon electrodes: estimating effective ion size in electrolytic solutions. J. Phys. Chem. B 105, 6880–6887 (2001).

    Article  CAS  Google Scholar 

  51. Hawks, S. A. et al. Using ultramicroporous carbon for the selective removal of nitrate with capacitive deionization. Environ. Sci. Technol. 53, 10863–10870 (2019).

    Article  CAS  Google Scholar 

  52. Liao, Y., Wang, M. & Chen, D. Electrosorption of uranium(VI) by highly porous phosphate-functionalized graphene hydrogel. Appl. Surf. Sci. 484, 83–96 (2019). This study chemically functionalized electrodes to obtain uranium selectivity over other metals.

    Article  CAS  Google Scholar 

  53. Hand, S., Guest, J. S. & Cusick, R. D. Technoeconomic analysis of brackish water capacitive deionization: navigating tradeoffs between performance, lifetime, and material costs. Environ. Sci. Technol. 53, 13353–13363 (2019).

    Article  Google Scholar 

  54. Hand, S. & Cusick, R. D. Emerging investigator series: capacitive deionization for selective removal of nitrate and perchlorate: Impacts of ion selectivity and operating constraints on treatment costs. Environ. Sci. Water Res. Technol. 6, 925–934 (2020).

    Article  CAS  Google Scholar 

  55. Yi, H. et al. Structure and properties of Prussian blue analogues in energy storage and conversion applications. Adv. Funct. Mater. 31, 2006970 (2021).

    Article  CAS  Google Scholar 

  56. Zhou, J. et al. Layered intercalation materials. Adv. Mater. 33, 2004557 (2021).

    Article  CAS  Google Scholar 

  57. Lee, J., Yu, S. H., Kim, C., Sung, Y. E. & Yoon, J. Highly selective lithium recovery from brine using a λ-MnO2-Ag battery. Phys. Chem. Chem. Phys. 15, 7690–7695 (2013).

    Article  CAS  Google Scholar 

  58. Guo, Z. Y., Ji, Z. Y., Wang, J., Guo, X. F. & Liang, J. S. Electrochemical lithium extraction based on ‘rocking-chair’ electrode system with high energy-efficient: the driving mode of constant current-constant voltage. Desalination 533, 115767 (2022).

    Article  CAS  Google Scholar 

  59. Zhao, A. L., Liu, J. C., Ai, X. P., Yang, H. X. & Cao, Y. L. Highly selective and pollution-free electrochemical extraction of lithium by a polyaniline/LixMn2O4 Cell. ChemSusChem 12, 1361–1367 (2019).

    Article  CAS  Google Scholar 

  60. Trócoli, R., Battistel, A. & Mantia, F. L. Selectivity of a lithium-recovery process based on LiFePO4. Chem. Eur. J. 20, 9888–9891 (2014).

    Article  Google Scholar 

  61. Shi, W. et al. Berlin green-based battery deionization-highly selective potassium recovery in seawater. Electrochim. Acta 310, 104–112 (2019).

    Article  CAS  Google Scholar 

  62. Wu, L. et al. Lithium recovery using electrochemical technologies: advances and challenges. Water Res. 221, 118822 (2022).

    Article  CAS  Google Scholar 

  63. Park, H. B., Kamcev, J., Robeson, L. M., Elimelech, M. & Freeman, B. D. Maximizing the right stuff: the trade-off between membrane permeability and selectivity. Science 356, eaab0530 (2017).

    Article  Google Scholar 

  64. He, R. et al. Unprecedented Mg2+/Li+ separation using layer-by-layer based nanofiltration hollow fiber membranes. Desalination 525, 115492 (2022).

    Article  CAS  Google Scholar 

  65. Warnock, S. J., Sujanani, R., Zofchak, E. S., Zhao, S. & Dilenschneider, T. J. Engineering Li/Na selectivity in 12-crown-4 functionalized polymer membranes. Proc. Natl Acad. Sci. USA 118, e2022197118 (2021).

    Article  CAS  Google Scholar 

  66. Doyle, D. A. et al. The structure of the potassium channel: molecular basis of k+ conduction and selectivity. Science 280, 69–77 (1998).

    Article  CAS  Google Scholar 

  67. Gouaux, E. & MacKinnon, R. Principles of selective ion transport in channels and pumps. Science 310, 1461–1465 (2005).

    Article  CAS  Google Scholar 

  68. DuChanois, R. M. et al. Designing polymeric membranes with coordination chemistry for high-precision ion separations. Sci. Adv. 8, eabm9436 (2022).

    Article  CAS  Google Scholar 

  69. Zuo, K. et al. Selective membranes in water and wastewater treatment: role of advanced materials. Mater. Today 50, 516–532 (2021).

    Article  CAS  Google Scholar 

  70. Chen, F. et al. Pyridine/oxadiazole‐based helical foldamer ion channels with exceptionally high K+/Na+ selectivity. Angew. Chem. Int. Ed. 132, 1456–1460 (2020).

    Article  Google Scholar 

  71. Lu, J. et al. Efficient metal ion sieving in rectifying subnanochannels enabled by metal–organic frameworks. Nat. Mater. 19, 767–774 (2020).

    Article  CAS  Google Scholar 

  72. Guo, Y., Ying, Y., Mao, Y., Peng, X. & Chen, B. Polystyrene sulfonate threaded through a metal-organic framework membrane for fast and selective lithium-ion separation. Angew. Chemie Int. Ed. 55, 15120–15124 (2016). Metal–organic frameworks were used to develop membranes with a selectivity of 1,815 for lithium over magnesium.

    Article  CAS  Google Scholar 

  73. Hou, L. et al. Understanding the ion transport behavior across nanofluidic membranes in response to the charge variations. Adv. Funct. Mater. 31, 2009970 (2021).

    Article  CAS  Google Scholar 

  74. Sholl, D. S. & Lively, R. P. Seven chemical separations to change the world. Nature 532, 435–437 (2016).

    Article  Google Scholar 

  75. Kilmartin, C. P., Ouimet, J. A., Dowling, A. W. & Phillip, W. A. Staged diafiltration cascades provide opportunities to execute highly selective separations. Ind. Eng. Chem. Res. 60, 15706–15719 (2021).

    Article  CAS  Google Scholar 

  76. Can Sener, S. E. et al. Recovery of critical metals from aqueous sources. ACS Sustain. Chem. Eng. 9, 11616–11634 (2021).

    Article  CAS  Google Scholar 

  77. Kumar, A., Fukuda, H., Hatton, T. A. & Lienhard, J. H. Lithium recovery from oil and gas produced water: a need for a growing energy industry. ACS Energy Lett. 4, 1471–1474 (2019).

    Article  CAS  Google Scholar 

  78. Kato, T. et al. Transport of ions and electrons in nanostructured liquid crystals. Nat. Rev. Mater. 2, 17001 (2017).

    Article  Google Scholar 

  79. Xu, T. et al. Highly cation permselective metal–organic framework membranes with leaf-like morphology. ChemSusChem 12, 2593–2597 (2019).

    Article  CAS  Google Scholar 

  80. Sheng, F. et al. Efficient ion sieving in covalent organic framework membranes with sub-2-nanometer channels. Adv. Mater. 33, 2104404 (2021).

    Article  CAS  Google Scholar 

  81. Wang, L. et al. Novel positively charged metal-coordinated nanofiltration membrane for lithium recovery. ACS Appl. Mater. Interfaces 13, 16906–16915 (2021).

    Article  CAS  Google Scholar 

  82. Afsar, N. U. et al. Cation exchange membrane integrated with cationic and anionic layers for selective ion separation via electrodialysis. Desalination 458, 25–33 (2019).

    Article  CAS  Google Scholar 

  83. Qiu, Y. et al. Study on recovering high-concentration lithium salt from lithium- containing wastewater using a hybrid reverse osmosis (RO) − electrodialysis (ED) process. ACS Sustain. Chem. Eng. 7, 13491–13490 (2019).

    Article  Google Scholar 

  84. Kim, S., Kim, J., Kim, S., Lee, J. & Yoon, J. Electrochemical lithium recovery and organic pollutant removal from industrial wastewater of a battery recycling plant. Environ. Sci. Technol. Lett. 4, 175–182 (2018).

    CAS  Google Scholar 

  85. Smolinski, T. et al. Solvent extraction of Cu, Mo, V, and U from leach solutions of copper ore and flotation tailings. J. Radioanal. Nucl. Chem. 314, 69–75 (2017).

    Article  CAS  Google Scholar 

  86. Mudd, G. M. Assessing the availability of global metals and minerals for the sustainable century: from aluminium to zirconium. Sustainability 13, 10855 (2021).

    Article  CAS  Google Scholar 

  87. Rodríguez, O. et al. Recovery of niobium and tantalum by solvent extraction from Sn-Ta-Nb mining tailings. RSC Adv. 10, 21406–21412 (2020).

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge support received from the US–Israel Binational Science Foundation (grant number CBET-2110138) and the US National Science Foundation (NSF) through the Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment (grant number EEC-1449500). R.M.D. acknowledges the Abel Wolman Fellowship from the American Water Works Association (AWWA), N.J.C. acknowledges the eFellows Postdoctoral Fellowship from the American Society for Engineering Education (ASEE, NSF grant number EEC-2127509), S.K.P. acknowledges the American Membrane Technology Association (AMTA) and Bureau of Reclamation Fellowship for Membrane Technology and L.M. acknowledges the NSF Graduate Research Fellowship. The contents of this Perspective are solely the responsibility of the authors and do not necessarily represent the official views of the NSF, AWWA, ASEE, AMTA or Bureau of Reclamation.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Thomas E. Graedel or Menachem Elimelech.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Water thanks Manhong Huang, Shiqiang Zou and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

DuChanois, R.M., Cooper, N.J., Lee, B. et al. Prospects of metal recovery from wastewater and brine. Nat Water 1, 37–46 (2023). https://doi.org/10.1038/s44221-022-00006-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44221-022-00006-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing