Designing restoration projects requires integrating socio-economic and cultural needs of local stakeholders for enduring and just outcomes. Using India as a case study, we demonstrate a people-centric approach to help policymakers translate global restoration prioritization studies for application to a country-specific context and to identify different socio-environmental conditions restoration programs could consider when siting projects. Focusing, in particular, on poverty quantified by living standards and land tenure, we find that of the 579 districts considered here, 116 of the poorest districts have high biophysical restoration potential (upper 50th percentile of both factors). In most districts, the predominant land tenure is private, indicating an opportunity to focus on agri-pastoral restoration over carbon and forest-based restoration projects.
Ecological restoration is a crucial nature-based solution for carbon sequestration and biodiversity conservation1. To fulfill targets of the Nationally Determined Contributions, the Bonn Challenge2 and land degradation neutrality3, research has identified areas of high value to restoration across the world based on biophysical characteristics4,5,6. While global restoration studies and prospecting tools enable private and public entities to decide where to focus restoration efforts for maximum biodiversity and carbon sequestration value, they leave people off the map. Designing and siting successful restoration projects requires consideration and integration of socio-economic needs and cultural characteristics of local stakeholders. Although there is an increasing recognition that local people need to be engaged and their interests need recognition in the design and implementation of restoration projects7,8, there are few examples of systematic consideration of people’s livelihoods and interests in restoration at large spatial scales9. Coarse socio-economic datasets cannot replace local consultations and needs assessments to ensure restoration projects provide benefits to local people. However, these data can be used as preliminary filters for different restoration methods. Here, we propose an explicit consideration of people’s socio-economic needs through the combination of biophysical and socio-economic factors to identify people-centric restoration opportunities. We also assess the de jure land tenure system to identify which types of land could be targeted for more tenure-responsive, long-lasting and socially just outcomes10.
We use India as a case study as it has a high biophysical restoration potential5,6 and one of the largest restoration targets of 26 million hectares by 203011. A large proportion (64%) of India’s population is rural and relies on local ecosystems for livelihoods through small-scale agriculture and common pool resources, making a people-centric lens to restoration design and implementation necessary. India’s focus on socio-economic development through programs such as the Aspirational Districts Programme12, emphasizes the need for the environmental agenda to align with the development agenda. For this analysis, we thus consider the living standards component of the multidimensional poverty as our socio-economic metric at the district level (N = 579 districts) to reflect dependence on natural resources. We choose this metric because people more dependent on natural resources for their subsistence and livelihoods are more likely to (a) be vulnerable to decisions made regarding land uses and (b) benefit from improved availability of natural resources in the short term. We compare this metric with the biophysical restoration potential (as quantified in Strassburg et al. 20206) to identify different socio-environmental conditions restoration programs must consider in order to balance environmental and social goals. Furthermore, we classify de jure land tenure regimes by aggregating village-level census data13 to identify prevalent land tenures. Land tenure is important for understanding who may have the authority to change land use. Although the biophysical restoration potential considered in this study refers to restoration without human disturbance6, we argue that such restoration is challenging and socially unjust in a country with high human population densities. Therefore, we define restoration as any activity which restores ecological functionality to degraded landscapes2, ranging from alternative agricultural and pastoral practices to natural ecosystem restoration.
We find that approximately 29% of districts (N = 166) with high biophysical potential are also above average poverty levels in India (above 50th percentile for biophysical potential and poverty of 579 districts; Figs. 1 and 2 quadrant 1). Similarly, 30% (N = 168) of districts have both below average biophysical potential and below average poverty (below 50th percentile for biophysical potential and poverty; Fig. 2, quadrant 3). This overlap indicates the potential and need to pursue restoration in a manner that addresses both ecological and social goals.
A Living standards component of the Multidimensional Poverty Index and B Biophysical restoration potential (quantified by Strassburg et al. 20206). The colors represent the percentile range to which the districts belong.
A Districts plotted in reference to biophysical restoration potential and poverty measured by the living standards component of multidimensional poverty. Each district is presented as a circle. Colors represent the dominant land tenure in the district. Vertical and horizontal dashed lines represent the 50th percentile according to biophysical restoration potential and poverty. The numbers in the corner of each quadrant correspond to districts of the same color in B.
In the majority of the 579 districts considered in this study, private land is the predominant land tenure, followed by non-forest commons, then forest commons (Fig. 3). Although recent restoration efforts have overwhelmingly focused on afforestation14,15, recent evidence indicates a larger climate change mitigation potential in alternative agricultural systems, such as agroforestry and trees outside forests (ToF), than in areas which are likely to be managed as closed-canopy forests16. Furthermore, the disproportionate focus on carbon-centric forest-based projects has led to underrepresentation of projects aimed at reducing emissions of other greenhouse gases (GHGs) such as methane with enormous mitigation potential14. Traditional agroforestry practices and ToF (e.g., live fences, silvi-pastures, horti-pastoral systems) are common in India17 and could lower other GHG emissions. While it may be simpler to facilitate agroforestry among individual land holders with clear land titles; restoring degraded common lands may facilitate broader benefits, particularly among the poorest people who often don’t own land or have a strong culture of common ownership (e.g., pastoralist communities in Gujarat and Rajasthan). However, restoration of the commons can be complex when the source of degradation (e.g., an invasive species), becomes a source of livelihood for a section of the local community18.
By analyzing biophysical, socio-economic and land tenure data together, policy makers can devise restoration programs more holistically. For example, ten of the fourteen poorest districts that have very high biophysical restoration potential (above 90th percentile in both restoration potential and poverty), have a predominance (>50%) of non-forest (N = 8) and forest commons (N = 2). In districts above the 80th percentile in terms of both restoration potential and poverty, approximately 40% had a predominant land tenure of forest (N = 9) and non-forest commons (N = 9, total = 45 districts). It may be tempting to situate reforestation and afforestation projects, which are based mainly on plantation models15, in poorer districts with high value for restoration. However, emerging evidence shows that afforestation projects do not always increase forest cover19, sometimes reduce pastoralist access to grazing lands20, and do not contribute much to the local communities’ needs for firewood and fodder19. We argue that in districts with high biophysical restoration potential and high poverty, it could be more effective to (a) encourage traditional agroforestry practices, (b) leverage economic policies and schemes designed to raise living standards21, (c) use alternative restoration practices, such as invasive species management in districts with a high proportion of common land and (d) allow for greater community rights to manage the commons22. For example, approximately 30% of the districts above the 80% percentile of both restoration potential and poverty are in Madhya Pradesh. Managing an invasive species, Lantana camara in forest and non-forest commons in that state increased the local communities’ access to firewood and fodder15. Moreover, recent evidence from some of these districts shows that switching to alternative energy sources for cooking and use of durable housing materials raised living standards, as well as provided a safer cooking fuel option and contributed to forest regeneration near villages21.
Similar evidence of forest regeneration with the adoption of biogas digesters in a district with high poverty but low biophysical restoration potential, such as Chikkaballapur in Karnataka, emphasizes the potential of human well-being policies to have positive ecological outcomes23. In districts with high biophysical restoration potential and low poverty, including Malappuram and Thrissur in Kerala, agroforestry and cash crop plantations, along with other livelihood alternatives, have played a role in alleviating poverty and increasing food security24. These traditional agroforestry systems and private home gardens could continue to be supported and incentivized. Furthermore, novel tools such as Diversity for Restoration (D4R) help people select appropriate species for planting based on the outcomes they are interested in, such as erosion control25. In regions with low poverty and low biophysical potential (both factors below 50th percentile), such as districts in Rajasthan and Gujarat, the predominant land tenure is private. These districts could be targeted for irrigation management to increase drought resistance and agri-pastoral projects which could simultaneously contribute to reductions in methane emissions14,17. With a considerable area of non-forest commons (>33.33% land tenure), pasture and open natural ecosystems (ONEs) restoration could also be beneficial to the numerous indigenous pastoralist communities in these states26,27. Moreover, ONEs would not necessarily store more carbon if afforested28. Thus, preserving these non-forest ecosystems will not only benefit pastoralists but also conserve unique non-forest ecosystem biodiversity27,28. The interventions suggested in the four different socio-environmental conditions were not designed in the context of the relationship between biophysical restoration potential and poverty. Therefore, it is critical to understand the applicability of these interventions in the context of these different conditions, and the cost-effectiveness of these interventions to successfully scale them.
Our analysis has some limitations. First, the district administrative unit is a convenient spatial scale to plan interventions and programs. But we recognize that households are not socio-economically uniform and thus, restoration programs will not have uniform effects in a district. As an example, agroforestry programs can have very different food security outcomes for people who own land and those who do not. Second, the analysis carries inherent uncertainties found in the data sources.
This study attempts to demonstrate a people-centric approach to translating global biophysical restoration potential studies for application to a country-specific context, rather than prescribing restoration priorities. Based on a country’s development and environmental agenda, the variables used to determine the different socio-environmental conditions may be different. An analysis of this nature can help policy makers and an emerging diversity of actors in the field of ecological restoration broadly filter restoration methods best suited for different socio-environmental conditions.
Methods
Data sources and preparation
Land uses and de jure land tenure regimes
We aggregated the most recent publicly available census data (2011)13 at the village level to the district level to quantify the de jure land tenure regimes that include private land, common non-forest land and forest land. For this study, we consider 579 districts for which we had a complete dataset, including the data on poverty and biophysical restoration potential. We categorized the land use data available at the census village level into the following de jure land tenures:
Land tenure regime | Land use categories from Census 2011 land records |
---|---|
Private land | 1. Net sown area 2. Current fallow land 3. Fallow lands other than current fallows |
Common non-forest land | 1. Culturable wastelands (grasslands) 2. Area under non-agricultural use 3. Barren or uncultivable land 4. Permanent pastures or grazing lands 5. Land under miscellaneous tree crops (orchards) |
Common forest land | Forest |
In order to only include inhabited census villages, we removed census villages with zero as total population and those explicitly labeled ‘uninhabited’ in the village name. Further, we included only non-state-owned land by filtering out the following categories of census villages:
Type of state-owned land | Terms used in the census village name |
---|---|
Army owned land or firing range | firing range |
Forest | reserve, beat, block, forest, camp, range, gate, K.M. |
In order to report the total hectares of specific land uses and to calculate the proportion of de jure land tenures, we treated any inconsistencies in the original census land use data in the following manner:
Inconsistency in the land use records | Description of the inconsistency | Potential reason for inconsistency | Treatment of inconsistency |
---|---|---|---|
No land use records | All land use columns show zero hectares but Total area in hectares has a positive value | The census enumerators did not reach these villages. | These villages appear as ‘No data’ |
Total areas in hectares reported not equal to total of all land uses | Column from Census 2011 records not equal to actual total hectares of all land uses. There are two possibilities: a: Total area in hectares > total of all land uses or b. Total area in hectares < total of all land uses | Error in addition of land uses by census enumerator or land use is currently disputed. | 1. For our analysis, we considered the total of all land uses to calculate the proportion of land tenure for a village. 2. We created a variable ‘Unaccounted land’ = Total area in hectares- Total of all land uses |
Total area in hectares is reported as zero but land use records exist | All land use columns have a positive value in hectares but Total area in hectares is zero | Error in addition of land uses by census enumerator. | For our analysis, we considered the total of all land uses to calculate the proportion of land tenure for a village. |
Living standards component of the multidimensional poverty index
Our study used one dimension (living standards) of the three dimensions of the multidimensional poverty index (living standards, health and education)29. We chose to only look at the percent contribution of living standards to poverty in a district because education and health services are provided largely by the government and may not necessarily reflect poverty due to the lack of viable livelihood options. For 579 districts, the percent contribution of living standards to multidimensional poverty ranged from 18.2% to 56.7%. We scaled this percentage from 0 to 1 to ensure that we could make a fair comparison with the biophysical potential for restoration taken from Strassburg et al. 20206. We split the districts into 10 percentiles based on their value, with values closer to zero indicating higher living standards and 1 denoting lower living standards or higher levels of poverty (Fig. 1a).
Biophysical potential for restoration
We used the spatial data from Fig. 1e from Strassburg et al. 2020, which considers the ecological restoration potential of countries around the world based on the biodiversity conservation and climate change mitigation potential that a location holds while considering the cost of land. In R computing software, using the packages raster30 and rgdal31, we clipped the map of the restoration potential of the districts in India to compute the mean biophysical restoration potential of a district. The values of the original dataset ranged from 1 to 20, denoting 5% increments in restoration potential. We rescaled the values from 0 to 1 to make a fair comparison with the living standards component of the multidimensional poverty index. We split the 579 districts into 10 percentiles for presentation (Fig. 1b).
All maps in this study were created using QGIS version 3.16.832.
Reporting summary
Further information on research design is available in the Nature Research Reporting Summary linked to this article.
Data availability
All the data used in this analysis is publicly available and available from the authors of Strassburg et al. 2020.
Code availability
The R code used to create figures and data used for mapping is available on GitHub.
References
Chazdon, R. L. et al. Carbon sequestration potential of second-growth forest regeneration in the Latin American tropics. Sci. Adv. 2, e1501639 (2016).
IKI. The Bonn Challenge. https://www.bonnchallenge.org/ (2022).
UNCCD. Land Degradation Neutrality. https://www.unccd.int/land-and-life/land-degradation-neutrality/overview (2022).
Bastin, J.-F. et al. The global tree restoration potential. Science 365, 76–79 (2019).
Brancalion, P. H. S. et al. Global restoration opportunities in tropical rainforest landscapes. Sci. Adv. 5, eaav3223 (2019).
Strassburg, B. B. N. et al. Global priority areas for ecosystem restoration. Nature 586, 724–729 (2020).
Erbaugh, J. T. et al. Global forest restoration and the importance of prioritizing local communities. Nat. Ecol. Evol. 4, 1472–1476 (2020).
Fleischman, F. et al. Restoration prioritization must be informed by marginalized people. Nature 607, E5–E6 (2022).
Chaturvedi, R. et al. Restoration Opportunities Atlas of India. www.india.restorationatlas.org/methodology (2022).
McLain, R., Lawry, S., Guariguata, M. R. & Reed, J. Toward a tenure-responsive approach to forest landscape restoration: a proposed tenure diagnostic for assessing restoration opportunities. Land Use Policy 104, 103748 (2021).
Binod, B., Bhattarcharjee, A. & Ishwar, N. M. Bonn Challenge and India: Progress on Restoration Efforts Across States and Landscapes (IUCN, 2018).
Government of India. Aspirational Districts Phase 1 (vikaspedia, 2018).
Government of India. Census of India. https://censusindia.gov.in/2011census/dchb/DCHB.html (2011).
DeFries, R. et al. Land management can contribute to net zero. Science 376, 1163–1165 (2022).
Borah, B., Bhattacharya, A. & Ishwar, N. M. Bonn Challenge and India. Progress On Restoration Efforts Across States and Landscapes. https://www.bonnchallenge.org/pledges/india (2018).
Gopalakrishna, T. et al. Existing land uses constrain climate change mitigation potential of forest restoration in India. Conserv. Lett. https://doi.org/10.1111/conl.12867 (2022).
Dhyani, S. et al. Agroforestry to achieve global climate adaptation and mitigation targets: are South Asian countries sufficiently prepared? Forests 12, 303 (2021).
Nerlekar, A. N. et al. Removal or utilization? Testing alternative approaches to the management of an invasive woody legume in an arid Indian grassland. Restor. Ecol. https://doi.org/10.1111/rec.13477 (2022).
Coleman, E. A. et al. Limited effects of tree planting on forest canopy cover and rural livelihoods in Northern India. Nat Sustain 4, 997–1004 (2021).
Ramprasad, V., Joglekar, A. & Fleischman, F. Plantations and pastoralists: afforestation activities make pastoralists in the Indian Himalaya vulnerable. Ecol. Soci. https://doi.org/10.5751/ES-11810-250401 (2020).
DeFries, R. et al. Improved household living standards can restore dry tropical forests. Biotropica https://doi.org/10.1111/btp.12978 (2021).
Lele, S., Khare, A. & Mokashi, S. Estimating and Mapping CFR Potential (ATREE, 2020).
Agarwala, M. et al. Impact of biogas interventions on forest biomass and regeneration in southern India. Global Ecol. Conservation 11, 213–223 (2017).
Menon, A. & Schmidt-Vogt, D. Effects of the COVID-19 pandemic on farmers and their responses: a study of three farming systems in Kerala. South India. Land 11, 144 (2022).
Fremout, T. et al. Diversity for Restoration (D4R): Guiding the selection of tree species and seed sources for climate‐resilient restoration of tropical forest landscapes. J. Appl. Ecol. 59, 664–679 (2022).
Hughes, K. A. et al. Can restoration of the commons reduce rural vulnerability? A Quasi-experimental comparison of COVID-19 livelihood-based coping strategies among rural households in three Indian States. Int. J. Common. 16, 189 (2022).
Madhusudan, M. D. & Vanak, A. Mapping the Distribution and Extent of India’s Semi-arid Open Natural Ecosystems. https://doi.org/10.1002/essoar.10507612.1 (2021).
Vanak, A. T., Hiremath, A. J., Ganesh, T. & Rai, N. D. Filling in the (Forest) Blanks: the Past, Present and Future of India’s Savanna Grasslands (ATREE, 2017).
Oxford Poverty & Human Development Initiative. Global Multidimensional Poverty Index 2018. The Most Detailed Picture to Date of the World’s Poorest People. https://ophi.org.uk/wp-content/uploads/G-MPI_2018_2ed_web.pdf (2018).
Hijmans, R. J. et al. raster: Geographic Data Analysis and Modeling. https://rspatial.org/raster (2023).
Bivand, R. et al. rgdal: Bindings for the ‘Geospatial’ Data Abstraction Library. https://cran.r-project.org/web/packages/rgdal/index.html (2023).
QGIS Development Team. QGIS Geographic Information System (Open Source Geospatial Foundation Project, 2022).
Acknowledgements
We thank Alvaro Iribarrem for sharing the data from Strassburg et al. 2020, which was used in our analysis.
Author information
Authors and Affiliations
Contributions
P.C. conceived this study. P.C. and I.B. collated the data. P.C. analyzed the data with equal inputs from all authors. All authors contributed to writing, revising and reviewing the manuscript.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
About this article
Cite this article
Choksi, P., Agrawal, A., Bialy, I. et al. Combining socioeconomic and biophysical data to identify people-centric restoration opportunities. npj biodivers 2, 7 (2023). https://doi.org/10.1038/s44185-023-00012-8
Received:
Accepted:
Published:
DOI: https://doi.org/10.1038/s44185-023-00012-8