Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The spectrum and systemic associations of microvascular dysfunction in the heart and other organs

Abstract

Microvascular dysfunction (MVD) contributes to several conditions that increase morbidity and mortality, including ischemic heart disease, heart failure, dementia, chronic kidney disease and hypertension. Consequently, MVD imposes a substantial burden on healthcare systems worldwide. In comparison to macrovascular dysfunction, MVD has been incompletely investigated, and it remains uncertain whether MVD in an organ constitutes a distinct pathology or a manifestation of a systemic disorder. Here, we summarize and appraise the techniques that are used to diagnose MVD. We review the disorders of the heart, brain and kidneys in which the role of MVD has been highlighted and summarize evidence hinting at a systemic or multi-organ nature of MVD. Finally, we discuss the benefits and limitations of implementing MVD testing in clinical practice with a focus on new interventions that are beginning to emerge.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Risk factors and manifestations of MVD.
Fig. 2: Diagnostic techniques to assess microcirculation in different organ systems.
Fig. 3: Diagnosis of INOCA endotypes.
Fig. 4: Coexistence of microvascular disease in organs other than the heart.

Similar content being viewed by others

References

  1. Guven, G., Hilty, M. P. & Ince, C. Microcirculation: physiology, pathophysiology, and clinical application. Blood Purif. 49, 143–150 (2020).

    Article  CAS  PubMed  Google Scholar 

  2. Hakim, A. M. Small vessel disease. Front. Neurol. 10, 1020 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Houben, A., Martens, R. J. H. & Stehouwer, C. D. A. Assessing microvascular function in humans from a chronic disease perspective. J. Am. Soc. Nephrol. 28, 3461–3472 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Del Buono, M. G. et al. Coronary microvascular dysfunction across the spectrum of cardiovascular diseases: JACC state-of-the-art review. J. Am. Coll. Cardiol. 78, 1352–1371 (2021). A state-of-the-art review summarizing the role of MVD across the spectrum of cardiovascular diseases.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Pantoni, L. Cerebral small vessel disease: from pathogenesis and clinical characteristics to therapeutic challenges. Lancet Neurol. 9, 689–701 (2010). A very informative review summarizing the evidence on the pathogenesis, clinical characteristics and therapeutic challenges of cerebral small vessel disease.

    Article  PubMed  Google Scholar 

  6. Querfeld, U., Mak, R. H. & Pries, A. R. Microvascular disease in chronic kidney disease: the base of the iceberg in cardiovascular comorbidity. Clin. Sci. 134, 1333–1356 (2020). A recently published review summarizing the current knowledge about microvascular disease in CKD.

    Article  CAS  Google Scholar 

  7. Berry, C. et al. Small-vessel disease in the heart and brain: current knowledge, unmet therapeutic need, and future directions. J. Am. Heart Assoc. 8, e011104 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Kunadian, V. et al. An EAPCI expert consensus document on ischaemia with non-obstructive coronary arteries in collaboration with European Society of Cardiology Working Group on Coronary Pathophysiology & Microcirculation endorsed by Coronary Vasomotor Disorders International Study Group. EuroIntervention 16, 1049–1069 (2021). Expert consensus document that provides a definition of INOCA and an evidence-based guidance on the diagnostic approach and management of the disease.

    Article  PubMed  Google Scholar 

  9. Knuuti, J. et al. 2019 ESC Guidelines for the diagnosis and management of chronic coronary syndromes. Eur. Heart J. 41, 407–477 (2020).

    Article  PubMed  Google Scholar 

  10. Ford, T. J. et al. Stratified medical therapy using invasive coronary function testing in angina: the CorMicA Trial. J. Am. Coll. Cardiol. 72, 2841–2855 (2018).

    Article  PubMed  Google Scholar 

  11. Chamuleau, S. A. et al. Association between coronary lesion severity and distal microvascular resistance in patients with coronary artery disease. Am. J. Physiol. Heart Circ. Physiol. 285, H2194–H2200 (2003).

    Article  CAS  PubMed  Google Scholar 

  12. Fearon, W. F. et al. Novel index for invasively assessing the coronary microcirculation. Circulation 107, 3129–3132 (2003).

    Article  PubMed  Google Scholar 

  13. Aarnoudse, W. et al. Epicardial stenosis severity does not affect minimal microcirculatory resistance. Circulation 110, 2137–2142 (2004).

    Article  PubMed  Google Scholar 

  14. De Maria, G. L. et al. Index of microcirculatory resistance-guided therapy with pressure-controlled intermittent coronary sinus occlusion improves coronary microvascular function and reduces infarct size in patients with ST-elevation myocardial infarction: the Oxford Acute Myocardial Infarction–Pressure-Controlled Intermittent Coronary Sinus Occlusion study (OxAMI-PICSO study). EuroIntervention 14, e352–e359 (2018).

    Article  PubMed  Google Scholar 

  15. Adjedj, J. et al. Intracoronary saline-induced hyperemia during coronary thermodilution measurements of absolute coronary blood flow: an animal mechanistic study. J. Am. Heart Assoc. 9, e015793 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Xaplanteris, P. et al. Catheter-based measurements of absolute coronary blood flow and microvascular resistance: feasibility, safety, and reproducibility in humans. Circ. Cardiovasc. Interv. 11, e006194 (2018).

    Article  PubMed  Google Scholar 

  17. Gutierrez, E. et al. Endothelial dysfunction over the course of coronary artery disease. Eur. Heart J. 34, 3175–3182 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Laksanakorn, W. et al. Cardiac rehabilitation for cardiac syndrome X and microvascular angina: a case report. Int. J. Case Rep. Images 6, 239–244 (2015).

    Article  Google Scholar 

  19. Ong, P. et al. Clinical usefulness, angiographic characteristics, and safety evaluation of intracoronary acetylcholine provocation testing among 921 consecutive white patients with unobstructed coronary arteries. Circulation 129, 1723–1730 (2014).

    Article  CAS  PubMed  Google Scholar 

  20. Takahashi, J., Suda, A., Yasuda, S. & Shimokawa, H. Measurement of myocardial lactate production for diagnosis of coronary microvascular spasm. J. Vis. Exp. https://doi.org/10.3791/62558 (2021).

  21. Schroder, J. & Prescott, E. Doppler echocardiography assessment of coronary microvascular function in patients with angina and no obstructive coronary artery disease. Front. Cardiovasc. Med. 8, 723542 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Sicari, R. et al. Additive prognostic value of coronary flow reserve in patients with chest pain syndrome and normal or near-normal coronary arteries. Am. J. Cardiol. 103, 626–631 (2009).

    Article  PubMed  Google Scholar 

  23. Michelsen, M. M. et al. Coronary flow velocity reserve assessed by transthoracic Doppler: the iPOWER study: factors influencing feasibility and quality. J. Am. Soc. Echocardiogr. 29, 709–716 (2016).

    Article  PubMed  Google Scholar 

  24. Hayat, S. A. & Senior, R. Myocardial contrast echocardiography in ST elevation myocardial infarction: ready for prime time? Eur. Heart J. 29, 299–314 (2008).

    Article  PubMed  Google Scholar 

  25. Feher, A. & Sinusas, A. J. Quantitative assessment of coronary microvascular function: dynamic single-photon emission computed tomography, positron emission tomography, ultrasound, computed tomography, and magnetic resonance imaging. Circ. Cardiovasc. Imaging 10, e006427 (2017).

  26. Bravo, P. E., Di Carli, M. F. & Dorbala, S. Role of PET to evaluate coronary microvascular dysfunction in non-ischemic cardiomyopathies. Heart Fail. Rev. 22, 455–464 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Al-Badri, A. et al. Inter-scan reproducibility of cardiovascular magnetic resonance imaging-derived myocardial perfusion reserve index in women with no obstructive coronary artery disease. Curr. Trends Clin. Med. Imaging 2, 555587 (2018).

  28. Masi, S. et al. Assessment and pathophysiology of microvascular disease: recent progress and clinical implications. Eur. Heart J. 42, 2590–2604 (2021).

    Article  CAS  PubMed  Google Scholar 

  29. Ho, K. T., Ong, H. Y., Tan, G. & Yong, Q. W. Dynamic CT myocardial perfusion measurements of resting and hyperaemic blood flow in low-risk subjects with 128-slice dual-source CT. Eur. Heart J. Cardiovasc. Imaging 16, 300–306 (2015).

    Article  PubMed  Google Scholar 

  30. Bairey Merz, C. N., Pepine, C. J., Walsh, M. N. & Fleg, J. L. Ischemia and no obstructive coronary artery disease (INOCA): developing evidence-based therapies and research agenda for the next decade. Circulation 135, 1075–1092 (2017).

    Article  PubMed  Google Scholar 

  31. Murthy, V. L. et al. Effects of sex on coronary microvascular dysfunction and cardiac outcomes. Circulation 129, 2518–2527 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Marin, F. et al. The role of coronary physiology in contemporary percutaneous coronary interventions. Curr. Cardiol. Rev. 18, 44–62 (2021).

  33. Crea, F. et al. The parallel tales of microvascular angina and heart failure with preserved ejection fraction: a paradigm shift. Eur. Heart J. 38, 473–477 (2017).

    CAS  PubMed  Google Scholar 

  34. Ali, D. et al. Heart failure with preserved ejection fraction (HFpEF) pathophysiology study (IDENTIFY-HF): does increased arterial stiffness associate with HFpEF, in addition to ageing and vascular effects of comorbidities? Rationale and design. BMJ Open 9, e027984 (2019).

    PubMed  PubMed Central  Google Scholar 

  35. Dryer, K. et al. Coronary microvascular dysfunction in patients with heart failure with preserved ejection fraction. Am. J. Physiol. Heart Circ. Physiol. 314, H1033–H1042 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Taqueti, V. R. et al. Coronary microvascular dysfunction and future risk of heart failure with preserved ejection fraction. Eur. Heart J. 39, 840–849 (2018).

    Article  CAS  PubMed  Google Scholar 

  37. Rush, C. J. et al. Prevalence of coronary artery disease and coronary microvascular dysfunction in patients with heart failure with preserved ejection fraction. JAMA Cardiol. 6, 1130–1143 (2021).

  38. Maron, B. J., Wolfson, J. K., Epstein, S. E. & Roberts, W. C. Intramural (“small vessel”) coronary artery disease in hypertrophic cardiomyopathy. J. Am. Coll. Cardiol. 8, 545–557 (1986).

    Article  CAS  PubMed  Google Scholar 

  39. Camici, P. et al. Coronary vasodilation is impaired in both hypertrophied and nonhypertrophied myocardium of patients with hypertrophic cardiomyopathy: a study with nitrogen-13 ammonia and positron emission tomography. J. Am. Coll. Cardiol. 17, 879–886 (1991).

    Article  CAS  PubMed  Google Scholar 

  40. Cecchi, F. et al. Coronary microvascular dysfunction and prognosis in hypertrophic cardiomyopathy. N. Engl. J. Med. 349, 1027–1035 (2003).

    Article  CAS  PubMed  Google Scholar 

  41. Canetti, M. et al. Evaluation of myocardial blood flow reserve in patients with chronic congestive heart failure due to idiopathic dilated cardiomyopathy. Am. J. Cardiol. 92, 1246–1249 (2003).

    Article  PubMed  Google Scholar 

  42. Neglia, D. et al. Prognostic role of myocardial blood flow impairment in idiopathic left ventricular dysfunction. Circulation 105, 186–193 (2002).

    Article  PubMed  Google Scholar 

  43. Ahn, J. H. et al. Coronary microvascular dysfunction as a mechanism of angina in severe AS: prospective adenosine-stress CMR study. J. Am. Coll. Cardiol. 67, 1412–1422 (2016).

    Article  PubMed  Google Scholar 

  44. Choudhury, L., Rosen, S. D., Patel, D., Nihoyannopoulos, P. & Camici, P. G. Coronary vasodilator reserve in primary and secondary left ventricular hypertrophy. A study with positron emission tomography. Eur. Heart J. 18, 108–116 (1997).

    Article  CAS  PubMed  Google Scholar 

  45. Rimoldi, O. & Maranta, F. Microvascular dysfunction in infiltrative cardiomyopathies. J. Nucl. Cardiol. 26, 200–207 (2019).

    Article  PubMed  Google Scholar 

  46. Dorbala, S. et al. Coronary microvascular dysfunction is related to abnormalities in myocardial structure and function in cardiac amyloidosis. JACC Heart Fail. 2, 358–367 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Camici, P. G. & Rimoldi, O. E. The clinical value of myocardial blood flow measurement. J. Nucl. Med. 50, 1076–1087 (2009).

    Article  PubMed  Google Scholar 

  48. Eng, C. M. et al. Safety and efficacy of recombinant human α-galactosidase A replacement therapy in Fabry’s disease. N. Engl. J. Med. 345, 9–16 (2001).

    Article  CAS  PubMed  Google Scholar 

  49. Elliott, P. M. et al. Coronary microvascular dysfunction in male patients with Anderson–Fabry disease and the effect of treatment with α galactosidase A. Heart 92, 357–360 (2006).

    Article  CAS  PubMed  Google Scholar 

  50. Pelliccia, F., Kaski, J. C., Crea, F. & Camici, P. G. Pathophysiology of Takotsubo syndrome. Circulation 135, 2426–2441 (2017).

    Article  CAS  PubMed  Google Scholar 

  51. Khalid, N. et al. Thrombolysis in myocardial infarction frame count in Takotsubo cardiomyopathy. Int. J. Cardiol. 191, 107–108 (2015).

    Article  PubMed  Google Scholar 

  52. Rivero, F. et al. Time-related microcirculatory dysfunction in patients with Takotsubo cardiomyopathy. JAMA Cardiol. 2, 699–700 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Galiuto, L. et al. Reversible coronary microvascular dysfunction: a common pathogenetic mechanism in apical ballooning or Tako-Tsubo syndrome. Eur. Heart J. 31, 1319–1327 (2010).

    Article  PubMed  Google Scholar 

  54. Sezer, M. et al. Coronary microvascular injury in reperfused acute myocardial infarction: a view from an integrative perspective. J. Am. Heart Assoc. 7, e009949 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. de Waha, S. et al. Relationship between microvascular obstruction and adverse events following primary percutaneous coronary intervention for ST-segment elevation myocardial infarction: an individual patient data pooled analysis from seven randomized trials. Eur. Heart J. 38, 3502–3510 (2017).

    Article  CAS  PubMed  Google Scholar 

  56. Fearon, W. F. et al. Prognostic value of the index of microcirculatory resistance measured after primary percutaneous coronary intervention. Circulation 127, 2436–2441 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  57. De Maria, G. L. et al. Angiography-derived index of microcirculatory resistance as a novel, pressure-wire-free tool to assess coronary microcirculation in ST elevation myocardial infarction. Int. J. Cardiovasc. Imaging 36, 1395–1406 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Scarsini, R. et al. Coronary microvascular dysfunction assessed by pressure wire and CMR aSTEMI predicts long-term outcomes. JACC Cardiovasc. Imaging 14, 1948–1959 (2021).

  59. Maznyczka, A. M., Oldroyd, K. G., McCartney, P., McEntegart, M. & Berry, C. The potential use of the index of microcirculatory resistance to guide stratification of patients for adjunctive therapy in acute myocardial infarction. JACC Cardiovasc. Interv. 12, 951–966 (2019).

    Article  PubMed  Google Scholar 

  60. Ter Telgte, A. et al. Cerebral small vessel disease: from a focal to a global perspective. Nat. Rev. Neurol. 14, 387–398 (2018).

    Article  PubMed  Google Scholar 

  61. Li, Q. et al. Cerebral small vessel disease. Cell Transplant. 27, 1711–1722 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Haglund, M., Sjobeck, M. & Englund, E. Severe cerebral amyloid angiopathy characterizes an underestimated variant of vascular dementia. Dement. Geriatr. Cogn. Disord. 18, 132–137 (2004).

    Article  PubMed  Google Scholar 

  63. Berlis, A. et al. Mechanical thrombolysis in acute ischemic stroke with endovascular photoacoustic recanalization. Stroke 35, 1112–1116 (2004).

    Article  PubMed  Google Scholar 

  64. Chojdak-Lukasiewicz, J., Dziadkowiak, E., Zimny, A. & Paradowski, B. Cerebral small vessel disease: a review. Adv. Clin. Exp. Med. 30, 349–356 (2021).

    Article  PubMed  Google Scholar 

  65. Wardlaw, J. M. et al. Neuroimaging standards for research into small vessel disease and its contribution to ageing and neurodegeneration. Lancet Neurol. 12, 822–838 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Gouw, A. A. et al. Progression of white matter hyperintensities and incidence of new lacunes over a 3-year period: the Leukoaraiosis and Disability study. Stroke 39, 1414–1420 (2008).

    Article  PubMed  Google Scholar 

  67. Gouw, A. A. et al. Heterogeneity of small vessel disease: a systematic review of MRI and histopathology correlations. J. Neurol. Neurosurg. Psychiatry 82, 126–135 (2011).

    Article  PubMed  Google Scholar 

  68. Pasi, M., van Uden, I. W., Tuladhar, A. M., de Leeuw, F. E. & Pantoni, L. White matter microstructural damage on diffusion tensor imaging in cerebral small vessel disease: clinical consequences. Stroke 47, 1679–1684 (2016).

    Article  PubMed  Google Scholar 

  69. Schulz, M., Malherbe, C., Cheng, B., Thomalla, G. & Schlemm, E. Functional connectivity changes in cerebral small vessel disease—a systematic review of the resting-state MRI literature. BMC Med. 19, 103 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Makedonov, I., Black, S. E. & MacIntosh, B. J. Cerebral small vessel disease in aging and Alzheimer’s disease: a comparative study using MRI and SPECT. Eur. J. Neurol. 20, 243–250 (2013).

    Article  CAS  PubMed  Google Scholar 

  71. Fakhri, A., Wack, D., Hourihane, M., Ajtai, B. & Miletich., R. Detection of white matter small vessel disease on Tc-99m-bicisate cerebral perfusion SPECT versus brain MRI. J. Nucl. Med. 58, 1264 (2017).

    Article  CAS  Google Scholar 

  72. Heiss, W. D. The additional value of PET in the assessment of cerebral small vessel disease. J. Nucl. Med. 59, 1660–1664 (2018).

    Article  CAS  PubMed  Google Scholar 

  73. Purroy, F. et al. Prevalence and predictors of cerebral microangiopathy determined by pulsatility index in an asymptomatic population from the ILERVAS project. Front. Neurol. 12, 785640 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Ghorbani, A., Ahmadi, M. J. & Shemshaki, H. The value of transcranial Doppler derived pulsatility index for diagnosing cerebral small-vessel disease. Adv. Biomed. Res. 4, 54 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  75. Nam, K. W., Kwon, H. M. & Lee, Y. S. Distinct association between cerebral arterial pulsatility and subtypes of cerebral small vessel disease. PLoS ONE 15, e0236049 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Czako, C. et al. Retinal biomarkers for Alzheimer’s disease and vascular cognitive impairment and dementia (VCID): implication for early diagnosis and prognosis. Geroscience 42, 1499–1525 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Li, W. et al. Microvascular phenotyping in the Maastricht Study: design and main findings, 2010–2018. Am. J. Epidemiol. 189, 873–884 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  78. Querques, G. et al. Functional and morphological changes of the retinal vessels in Alzheimer’s disease and mild cognitive impairment. Sci. Rep. 9, 63 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Hughes, A. D. et al. Association of retinopathy and retinal microvascular abnormalities with stroke and cerebrovascular disease. Stroke 47, 2862–2864 (2016). Study providing evidence in support of the systemic nature of MVD, as retinal microvascular signs were found to be independently associated with strokes and white-matter lesions in a population-based cohort.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Theuerle, J. D. et al. Impaired retinal microvascular function predicts long-term adverse events in patients with cardiovascular disease. Cardiovasc. Res. 117, 1949–1957 (2020).

  81. Gorelick, P. B. et al. Vascular contributions to cognitive impairment and dementia: a statement for healthcare professionals from the American Heart Association/American Stroke Association. Stroke 42, 2672–2713 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  82. Moghekar, A. et al. Cerebral white matter disease is associated with Alzheimer pathology in a prospective cohort. Alzheimers Dement. 8, S71–S77 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  83. Pinter, D. et al. Impact of small vessel disease in the brain on gait and balance. Sci. Rep. 7, 41637 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. van Norden, A. G. et al. Causes and consequences of cerebral small vessel disease. The RUN DMC study: a prospective cohort study. Study rationale and protocol. BMC Neurol. 11, 29 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  85. Kolominsky-Rabas, P. L., Weber, M., Gefeller, O., Neundoerfer, B. & Heuschmann, P. U. Epidemiology of ischemic stroke subtypes according to TOAST criteria: incidence, recurrence, and long-term survival in ischemic stroke subtypes: a population-based study. Stroke 32, 2735–2740 (2001).

    Article  CAS  PubMed  Google Scholar 

  86. Cooper, L. S. et al. Retinal microvascular abnormalities and MRI-defined subclinical cerebral infarction: the Atherosclerosis Risk in Communities Study. Stroke 37, 82–86 (2006).

    Article  PubMed  Google Scholar 

  87. Baker, M. L. et al. Retinal microvascular signs may provide clues to the underlying vasculopathy in patients with deep intracerebral hemorrhage. Stroke 41, 618–623 (2010).

    Article  PubMed  Google Scholar 

  88. Ames, A. 3rd, Wright, R. L., Kowada, M., Thurston, J. M. & Majno, G. Cerebral ischemia. II. The no-reflow phenomenon. Am. J. Pathol. 52, 437–453 (1968).

    PubMed  PubMed Central  Google Scholar 

  89. Erdener, S. E. & Dalkara, T. Small vessels are a big problem in neurodegeneration and neuroprotection. Front. Neurol. 10, 889 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  90. Krishnan, S. et al. Microvascular dysfunction and kidney disease: challenges and opportunities? Microcirculation 28, e12661 (2021).

    Article  PubMed  Google Scholar 

  91. Yoo, K. H., Yim, H. E., Bae, E. S. & Hong, Y. S. Capillary rarefaction and altered renal development: the imbalance between pro- and anti-angiogenic factors in response to angiotensin II inhibition in the developing rat kidney. J. Mol. Histol. 49, 219–228 (2018).

    Article  CAS  PubMed  Google Scholar 

  92. Smith, A., Gaba, R. C., Bui, J. T. & Minocha, J. Management of renovascular hypertension. Tech. Vasc. Interv. Radiol. 19, 211–217 (2016).

    Article  PubMed  Google Scholar 

  93. Mahmud, E. et al. Renal frame count and renal blush grade: quantitative measures that predict the success of renal stenting in hypertensive patients with renal artery stenosis. JACC Cardiovasc. Interv. 1, 286–292 (2008).

    Article  PubMed  Google Scholar 

  94. Gocer, H., Gunday, M. & Unal, M. Renal frame count and high blood pressure. Clin. Ter. 171, e137–e141 (2020).

    CAS  PubMed  Google Scholar 

  95. Trani, C. et al. Post-procedural renal microvascular perfusion measured using the Quantitative Blush Evaluator (QuBE) predicts improvement in renal function in patients undergoing percutaneous renal artery stenting. Int. J. Cardiol. 172, e127–e129 (2014).

    Article  PubMed  Google Scholar 

  96. Amiel, C., Blanchet, F., Friedlander, G. & Nitenberg, A. [Renal functional reserve]. Rev. Prat. 42, 413–416 (1992).

    CAS  PubMed  Google Scholar 

  97. van Brussel, P. M. et al. Feasibility and reproducibility of renal flow reserve with combined pressure and flow velocity measurements. EuroIntervention 16, e1036–e1038 (2020).

    Article  PubMed  Google Scholar 

  98. van Brussel, P. M., van de Hoef, T. P., de Winter, R. J., Vogt, L. & van den Born, B. J. Hemodynamic measurements for the selection of patients with renal artery stenosis: a systematic review. JACC Cardiovasc. Interv. 10, 973–985 (2017).

    Article  PubMed  Google Scholar 

  99. von Stillfried, S. et al. Contrast-enhanced CT imaging in patients with chronic kidney disease. Angiogenesis 19, 525–535 (2016).

    Article  CAS  Google Scholar 

  100. Leung, G. et al. Could MRI be used to image kidney fibrosis? A review of recent advances and remaining barriers. Clin. J. Am. Soc. Nephrol. 12, 1019–1028 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Hansen, K. L., Nielsen, M. B. & Ewertsen, C. Ultrasonography of the kidney: a pictorial review. Diagnostics 6, 2 (2015).

  102. Crutchley, T. A. et al. Clinical utility of the resistive index in atherosclerotic renovascular disease. J. Vasc. Surg. 49, 148–155 (2009).

    Article  PubMed  Google Scholar 

  103. Pearce, J. D. et al. Associations between renal duplex parameters and adverse cardiovascular events in the elderly: a prospective cohort study. Am. J. Kidney Dis. 55, 281–290 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  104. Levy, B. I., Ambrosio, G., Pries, A. R. & Struijker-Boudier, H. A. Microcirculation in hypertension: a new target for treatment? Circulation 104, 735–740 (2001).

    Article  CAS  PubMed  Google Scholar 

  105. Serne, E. H. et al. Impaired skin capillary recruitment in essential hypertension is caused by both functional and structural capillary rarefaction. Hypertension 38, 238–242 (2001).

    Article  CAS  PubMed  Google Scholar 

  106. Hedman, A., Reneland, R. & Lithell, H. O. Alterations in skeletal muscle morphology in glucose-tolerant elderly hypertensive men: relationship to development of hypertension and heart rate. J. Hypertens. 18, 559–565 (2000).

    Article  CAS  PubMed  Google Scholar 

  107. Wong, T. Y. et al. Retinal arteriolar diameter and risk for hypertension. Ann. Intern. Med. 140, 248–255 (2004).

    Article  PubMed  Google Scholar 

  108. Johnson, R. J., Herrera-Acosta, J., Schreiner, G. F. & Rodriguez-Iturbe, B. Subtle acquired renal injury as a mechanism of salt-sensitive hypertension. N. Engl. J. Med. 346, 913–923 (2002).

    Article  CAS  PubMed  Google Scholar 

  109. Gerges, C. et al. Microvascular disease in chronic thromboembolic pulmonary hypertension: hemodynamic phenotyping and histomorphometric assessment. Circulation 141, 376–386 (2020).

    Article  PubMed  Google Scholar 

  110. Pepke-Zaba, J. et al. Chronic thromboembolic pulmonary hypertension (CTEPH): results from an international prospective registry. Circulation 124, 1973–1981 (2011).

    Article  PubMed  Google Scholar 

  111. Lesnik Oberstein, S. A. et al. Myocardial infarction in cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL). Medicine 82, 251–256 (2003).

    PubMed  Google Scholar 

  112. Cheung, N. et al. Retinal arteriolar narrowing and left ventricular remodeling: the multi-ethnic study of atherosclerosis. J. Am. Coll. Cardiol. 50, 48–55 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  113. Nagele, M. P. et al. Retinal microvascular dysfunction in heart failure. Eur. Heart J. 39, 47–56 (2018).

    Article  CAS  PubMed  Google Scholar 

  114. Liew, G. et al. Retinal microvascular changes in microvascular angina: findings from the Australian Heart Eye Study. Microcirculation 26, e12536 (2019). Study providing evidence in support of microvascular disease being a whole-body disease, as it showed that CMD was associated with retinal microvascular changes that were different from those in CAD in participants of the Australian Heart Eye Study.

    Article  PubMed  Google Scholar 

  115. Reriani, M. et al. Microvascular endothelial dysfunction predicts the development of erectile dysfunction in men with coronary atherosclerosis without critical stenoses. Coron. Artery Dis. 25, 552–557 (2014). Study showing that CMD was a predictor of erectile dysfunction, in which MVD has also been implicated, in men with coronary atherosclerosis without critical epicardial stenosis.

    Article  PubMed  PubMed Central  Google Scholar 

  116. Ford, T. J. et al. Systemic microvascular dysfunction in microvascular and vasospastic angina. Eur. Heart J. 39, 4086–4097 (2018). Study with findings that provide evidence linking MVD in different organ systems, as patients with CMD and vasospastic angina had systemic microvascular abnormalities, such as endothelial dysfunction and increased response to vasoconstrictors.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Anderson, T. J. et al. Microvascular function predicts cardiovascular events in primary prevention: long-term results from the Firefighters and their Endothelium (FATE) study. Circulation 123, 163–169 (2011).

    Article  PubMed  Google Scholar 

  118. Horsburgh, K. et al. Small vessels, dementia and chronic diseases—molecular mechanisms and pathophysiology. Clin. Sci. 132, 851–868 (2018).

    Article  Google Scholar 

  119. Crea, F., Montone, R. A. & Rinaldi, R. Pathophysiology of coronary microvascular dysfunction. Circ. J. https://doi.org/10.1253/circj.CJ-21-0848 (2021).

  120. Taqueti, V. R. & Di Carli, M. F. Coronary microvascular disease pathogenic mechanisms and therapeutic options: JACC state-of-the-art review. J. Am. Coll. Cardiol. 72, 2625–2641 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  121. Durand, M. J. & Gutterman, D. D. Diversity in mechanisms of endothelium-dependent vasodilation in health and disease. Microcirculation 20, 239–247 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Ohura-Kajitani, S. et al. Marked impairment of endothelium-dependent digital vasodilatations in patients with microvascular angina: evidence for systemic small artery disease. Arterioscler. Thromb. Vasc. Biol. 40, 1400–1412 (2020).

    Article  CAS  PubMed  Google Scholar 

  123. Faraci, F. M. Protecting against vascular disease in brain. Am. J. Physiol. Heart Circ. Physiol. 300, H1566–H1582 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Feletou, M. & Vanhoutte, P. M. EDHF: an update. Clin. Sci. 117, 139–155 (2009).

    Article  CAS  Google Scholar 

  125. Galie, N. et al. Sildenafil citrate therapy for pulmonary arterial hypertension. N. Engl. J. Med. 353, 2148–2157 (2005).

    Article  CAS  PubMed  Google Scholar 

  126. Shin, E. S. et al. A randomised, multicentre, double blind, placebo controlled trial to evaluate the efficacy and safety of cilostazol in patients with vasospastic angina. Heart 100, 1531–1536 (2014).

    Article  CAS  PubMed  Google Scholar 

  127. Kim, B. C. et al. Cilostazol versus aspirin on white matter changes in cerebral small vessel disease: a randomized controlled trial. Stroke 53, 698–709 (2021).

  128. Han, S. W. et al. Cilostazol decreases cerebral arterial pulsatility in patients with mild white matter hyperintensities: subgroup analysis from the Effect of Cilostazol in Acute Lacunar Infarction Based on Pulsatility Index of Transcranial Doppler (ECLIPse) study. Cerebrovasc. Dis. 38, 197–203 (2014).

    Article  CAS  PubMed  Google Scholar 

  129. Asal, N. J. & Wojciak, K. A. Effect of cilostazol in treating diabetes-associated microvascular complications. Endocrine 56, 240–244 (2017).

    Article  CAS  PubMed  Google Scholar 

  130. Maruhashi, T., Kihara, Y. & Higashi, Y. Assessment of endothelium-independent vasodilation: from methodology to clinical perspectives. J. Hypertens. 36, 1460–1467 (2018).

    Article  CAS  PubMed  Google Scholar 

  131. Dhandapani, K. M. & Brann, D. W. Transforming growth factor-β: a neuroprotective factor in cerebral ischemia. Cell Biochem. Biophys. 39, 13–22 (2003).

    Article  CAS  PubMed  Google Scholar 

  132. Guan, Z. & Inscho, E. W. Endothelin and the renal vasculature. Contrib. Nephrol. 172, 35–49 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Reriani, M. et al. Long-term administration of endothelin receptor antagonist improves coronary endothelial function in patients with early atherosclerosis. Circulation 122, 958–966 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Morrow, A. J. et al. Rationale and design of the Medical Research Council’s Precision Medicine with Zibotentan in Microvascular Angina (PRIZE) trial. Am. Heart J. 229, 70–80 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Suda, A. et al. Coronary functional abnormalities in patients with angina and nonobstructive coronary artery disease. J. Am. Coll. Cardiol. 74, 2350–2360 (2019).

    Article  CAS  PubMed  Google Scholar 

  136. Rothschild, P. R. et al. ROCK-1 mediates diabetes-induced retinal pigment epithelial and endothelial cell blebbing: contribution to diabetic retinopathy. Sci. Rep. 7, 8834 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Mohri, M., Shimokawa, H., Hirakawa, Y., Masumoto, A. & Takeshita, A. Rho-kinase inhibition with intracoronary fasudil prevents myocardial ischemia in patients with coronary microvascular spasm. J. Am. Coll. Cardiol. 41, 15–19 (2003).

    Article  CAS  PubMed  Google Scholar 

  138. Shibuya, M. et al. Effects of fasudil in acute ischemic stroke: results of a prospective placebo-controlled double-blind trial. J. Neurol. Sci. 238, 31–39 (2005).

    Article  CAS  PubMed  Google Scholar 

  139. Sax, F. L., Cannon, R. O. 3rd, Hanson, C. & Epstein, S. E. Impaired forearm vasodilator reserve in patients with microvascular angina. Evidence of a generalized disorder of vascular function? N. Engl. J. Med. 317, 1366–1370 (1987).

    Article  CAS  PubMed  Google Scholar 

  140. Seitz, A. & Sechtem, U. Intracoronary function testing in patients with INOCA: is it worth the money? Int. J. Cardiol. 339, 10–11 (2021).

    Article  PubMed  Google Scholar 

  141. Sun, S. S. et al. Cerebral perfusion in patients with syndrome X: a single photon emission computed tomography study. J. Neuroimaging 11, 148–152 (2001). Case–control study describing the coexistence of MVD in the heart and brain in patients with cardiac syndrome X and myocardial perfusion defects who had an increased risk of brain hypoperfusion lesions.

    Article  CAS  PubMed  Google Scholar 

  142. Pai, P. Y., Liu, F. Y., Kao, A., Lin, C. C. & Lee, C. C. A higher prevalence of abnormal regional cerebral blood flow in patients with syndrome X and abnormal myocardial perfusion. Jpn. Heart J. 44, 145–152 (2003).

    Article  PubMed  Google Scholar 

  143. Wong, T. Y. et al. Retinopathy and risk of congestive heart failure. J. Am. Med. Assoc. 293, 63–69 (2005).

    Article  CAS  Google Scholar 

  144. Demirkol, S. et al. Association between microvascular angina and erectile dsyfunction. Int. J. Impot. Res. 26, 124–127 (2014).

    Article  CAS  PubMed  Google Scholar 

  145. Wei, W. et al. Correlation of retinopathy with leukoaraiosis in patients with anterior circulation infarcts. J. Clin. Neurosci. 33, 105–110 (2016).

    Article  PubMed  Google Scholar 

  146. Mohandas, R. et al. Renal function and coronary microvascular dysfunction in women with symptoms/signs of ischemia. PLoS ONE 10, e0125374 (2015). Cohort study showing that renal function was significantly associated with CFR and that a decrease in renal function was associated with CMD in women undergoing coronary angiography for suspected ischemia.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Lin, C., Zhang, P., Xue, Y., Huang, Y. & Ji, K. Link of renal microcirculatory dysfunction to increased coronary microcirculatory resistance in hypertensive patients. Cardiol. J. 24, 623–632 (2017).

    Article  PubMed  Google Scholar 

  148. Seliger, S. L. et al. Cystatin C and subclinical brain infarction. J. Am. Soc. Nephrol. 16, 3721–3727 (2005).

    Article  CAS  PubMed  Google Scholar 

  149. Riverol, M. et al. Relationship between systemic and cerebral vascular disease and brain structure integrity in normal elderly individuals. J. Alzheimers Dis. 44, 319–328 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Banerjee, G. et al. Impaired renal function is related to deep and mixed, but not strictly lobar cerebral microbleeds in patients with ischaemic stroke and TIA. J. Neurol. 263, 760–764 (2016).

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

M.E., D.T.-P., R.A.K., F.M., C.M., G.L.D.M. and A.P.B. actively participated in the conception of the review, drafting and revising the manuscript critically for important intellectual content and final approval of the published text.

Corresponding author

Correspondence to Adrian P. Banning.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Cardiovascular Research thanks Hiroaki Shimokawa, Armin Arbab-Zadeh and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Emfietzoglou, M., Terentes-Printzios, D., Kotronias, R.A. et al. The spectrum and systemic associations of microvascular dysfunction in the heart and other organs. Nat Cardiovasc Res 1, 298–311 (2022). https://doi.org/10.1038/s44161-022-00045-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44161-022-00045-5

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing