Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Photocatalysts for steering charge transfer and radical reactions in biorefineries

Abstract

Photocatalysis has emerged as a green protocol for biorefineries thanks to sustainable energy input. The unique radical mechanism of photocatalysis allows the decomposition of raw biomass and the precise functionalization of platform molecules, but radicals with open-shell electronic structures are highly active, resulting in diverse products. Control of the radical mechanism relies on photocatalysts guiding interfacial charge transfer for chemical bond breaking. The reaction behaviour of radicals and the surface states of semiconductor photocatalysts are therefore crucial for controlling the efficiency and selectivity of biorefineries. Here we discuss the factors that influence the interfacial charge transfer and radical reactions in photocatalytic biorefineries, including the surface structure and electronic states of semiconductors and the catalytic properties of cocatalysts. Recognition of these factors will feed back the expected structure of semiconductors and cocatalysts, assisting with the design of photocatalysts for the efficient and selective refining of native biomass.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Overview of the biomass involved in photocatalytic biorefineries.
Fig. 2: Overview of the reaction types involved in PBR.
Fig. 3: Strategies for engineering photocatalysts for boosted hole or electron transfer in PBR.
Fig. 4: Strategies for engineering photocatalysts for selectively extracting holes or electrons in PBR.
Fig. 5: Overview of ROR formation and the principle of controlling the reaction of CCRs.
Fig. 6: Strategies for engineering photocatalysts to control the generation of RORs in PBR.
Fig. 7: Strategies for engineering photocatalysts to control the reaction patterns of CCRs.

Similar content being viewed by others

References

  1. Wu, X. et al. Photocatalytic transformations of lignocellulosic biomass into chemicals. Chem. Soc. Rev. 49, 6198–6223 (2020).

    Article  CAS  PubMed  Google Scholar 

  2. Lam, E. & Reisner, E. A TiO2-Co(terpyridine)2 photocatalyst for the selective oxidation of cellulose to formate coupled to the reduction of CO2 to syngas. Angew. Chem. Int. Ed. 60, 23306–23312 (2021).

    Article  CAS  Google Scholar 

  3. Huang, Z., Luo, N., Zhang, C. & Wang, F. Radical generation and fate control for photocatalytic biomass conversion. Nat. Rev. Chem. 6, 197–214 (2022).

    Article  PubMed  Google Scholar 

  4. Paul, R., Kalita, P., Wong, B. M. & Mondal, J. Progress and outlook of solar-powered biomass for biorefineries: a minireview. Energy Fuels 36, 14573–14583 (2022).

    Article  CAS  Google Scholar 

  5. Aboagye, D., Djellabi, R., Medina, F. & Contreras, S. Radical-mediated photocatalysis for lignocellulosic biomass conversion into value-added chemicals and hydrogen: facts, opportunities and challenges. Angew. Chem. Int. Ed. 62, e202301909 (2023).

    Article  CAS  Google Scholar 

  6. de Jong, W. Biomass Composition, Properties and Characterization (Wiley, 2014).

  7. Liao, Y. et al. A sustainable wood biorefinery for low-carbon footprint chemicals production. Science 367, 1385–1390 (2020).

    Article  CAS  PubMed  Google Scholar 

  8. Wu, X. et al. Solar energy-driven lignin-first approach to full utilization of lignocellulosic biomass under mild conditions. Nat. Catal. 1, 772–780 (2018).

    Article  CAS  Google Scholar 

  9. Luo, N. et al. Low-work function metals boost selective and fast scission of methanol C-H bonds. ACS Catal. 12, 6375–6384 (2022).

    Article  CAS  Google Scholar 

  10. Gao, Z. et al. Hydrogen bonding promotes alcohol C-C coupling. J. Am. Chem. Soc. 144, 18986–18994 (2022).

    Article  CAS  PubMed  Google Scholar 

  11. Zhang, C. & Wang, F. Catalytic lignin depolymerization to aromatic chemicals. Acc. Chem. Res. 53, 470–484 (2020).

    Article  CAS  PubMed  Google Scholar 

  12. Toe, C. Y. et al. Advancing photoreforming of organics: highlights on photocatalyst and system designs for selective oxidation reactions. Energy Environ. Sci. 14, 1140–1175 (2021).

    Article  CAS  Google Scholar 

  13. Tadesse, H. & Luque, R. Advances on biomass pretreatment using ionic liquids: an overview. Energy Environ. Sci. 4, 3913–3929 (2011).

    Article  CAS  Google Scholar 

  14. Hassan, S. S., Williams, G. A. & Jaiswal, A. K. Emerging technologies for the pretreatment of lignocellulosic biomass. Bioresour. Technol. 262, 310–318 (2018).

    Article  CAS  PubMed  Google Scholar 

  15. Huang, Y.-B. & Fu, Y. Hydrolysis of cellulose to glucose by solid acid catalysts. Green Chem. 15, 1095–1111 (2013).

    Article  CAS  Google Scholar 

  16. Bohre, A., Dutta, S., Saha, B. & Abu-Omar, M. M. Upgrading furfurals to drop-in biofuels: an overview. ACS Sustain. Chem. Eng. 3, 1263–1277 (2015).

    Article  CAS  Google Scholar 

  17. Boro, B. et al. Influence of the intrinsic nanocore environment in a Pd-metalated porous organic polymer for catalytic biomass-derived furfural upgrading. ACS Appl. Nano Mater. 5, 14706–14721 (2022).

    Article  CAS  Google Scholar 

  18. Ooms, R. et al. Conversion of sugars to ethylene glycol with nickel tungsten carbide in a fed-batch reactor: high productivity and reaction network elucidation. Green Chem. 16, 695–707 (2014).

    Article  CAS  Google Scholar 

  19. Wang, M., Liu, M., Lu, J. & Wang, F. Photo splitting of bio-polyols and sugars to methanol and syngas. Nat. Commun. 11, 1083 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Lahive, C. W., Kamer, P. C. J., Lancefield, C. S. & Deuss, P. J. An introduction to model compounds of lignin linking motifs; synthesis and selection considerations for reactivity studies. ChemSusChem 13, 4238–4265 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Domínguez-Avila, J. A. & González-Aguilar, G. A. in Postharvest Physiology and Biochemistry of Fruits and Vegetables (eds Yahia, E. M. & Carrillo-Lopez, A.) 273–292 (Elsevier, 2019).

  22. Kawai, T. & Sakata, T. Conversion of carbohydrate into hydrogen fuel by a photocatalytic process. Nature 286, 474–476 (1980).

    Article  CAS  Google Scholar 

  23. Uekert, T., Pichler, C. M., Schubert, T. & Reisner, E. Solar-driven reforming of solid waste for a sustainable future. Nat. Sustain. 4, 383–391 (2021).

    Article  Google Scholar 

  24. Banerjee, D., Kushwaha, N., Shetti, N. P., Aminabhavi, T. M. & Ahmad, E. Green hydrogen production via photo-reforming of bio-renewable resources. Renew. Sust. Energ. Rev. 167, 112827 (2022).

    Article  CAS  Google Scholar 

  25. Speltini, A. et al. Sunlight-promoted photocatalytic hydrogen gas evolution from water-suspended cellulose: a systematic study. Photochem. Photobiol. Sci. 13, 1410–1419 (2014).

    Article  CAS  PubMed  Google Scholar 

  26. Whittaker, C. & Shield, I. in Greenhouse Gas Balances of Bioenergy Systems (eds Thornley, P. & Adams, P.) Ch. 7, 97–106 (Academic, 2018).

  27. Wang, M., Wang, F. & Zhou, H. Photocatalytic production of syngas from biomass. Acc. Chem. Res. 56, 1057–1069 (2023).

    Article  CAS  PubMed  Google Scholar 

  28. Gazi, S. et al. Selective photocatalytic C-C bond cleavage under ambient conditions with earth abundant vanadium complexes. Chem. Sci. 6, 7130–7142 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Hou, T. et al. Yin and yang dual characters of CuOx clusters for C-C bond oxidation driven by visible light. ACS Catal. 7, 3850–3859 (2017).

    Article  CAS  Google Scholar 

  30. Zhu, Q. & Nocera, D. G. Catalytic C(β)-O bond cleavage of lignin in a one-step reaction enabled by a spin-center shift. ACS Catal. 11, 14181–14187 (2021).

    Article  CAS  Google Scholar 

  31. Luo, N. et al. Visible-light-driven self-hydrogen transfer hydrogenolysis of lignin models and extracts into phenolic products. ACS Catal. 7, 4571–4580 (2017).

    Article  CAS  Google Scholar 

  32. Lin, J. et al. Visible-light-driven cleavage of C-O linkage for lignin valorization to functionalized aromatics. ChemSusChem 12, 5023–5031 (2019).

    Article  CAS  PubMed  Google Scholar 

  33. Han, P. et al. Plasmonic silver-nanoparticle-catalysed hydrogen abstraction from the C(sp3)-H bond of the benzylic Cα atom for cleavage of alkyl aryl ether bonds. Angew. Chem. Int. Ed. 62, e202215201 (2023).

    Article  CAS  Google Scholar 

  34. Ouyang, D. et al. Light-driven lignocellulosic biomass conversion for production of energy and chemicals. iScience 25, 105221 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Tian, Z. et al. Selective photoelectrochemical oxidation of glucose to glucaric acid by single atom Pt decorated defective TiO2. Nat. Commun. 14, 142 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Parrino, F. et al. Heterogeneous photocatalysis for selective formation of high-value-added molecules: some chemical and engineering aspects. ACS Catal. 8, 11191–11225 (2018).

    Article  CAS  Google Scholar 

  37. Wu, X. et al. Selectivity control in photocatalytic valorization of biomass-derived platform compounds by surface engineering of titanium oxide. Chem 6, 3038–3053 (2020).

    Article  CAS  Google Scholar 

  38. Han, G., Liu, X., Cao, Z. & Sun, Y. Photocatalytic pinacol C-C coupling and jet fuel precursor production on ZnIn2S4 nanosheets. ACS Catal. 10, 9346–9355 (2020).

    Article  CAS  Google Scholar 

  39. Huang, Y.-B., Yang, Z., Dai, J.-J., Guo, Q.-X. & Fu, Y. Production of high quality fuels from lignocellulose-derived chemicals: a convenient C-C bond formation of furfural, 5-methylfurfural and aromatic aldehyde. RSC Adv. 2, 11211–11214 (2012).

    Article  CAS  Google Scholar 

  40. Xie, S. et al. Visible light-driven C−H activation and C−C coupling of methanol into ethylene glycol. Nat. Commun. 9, 1181 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Song, S. et al. Visible-light-driven amino acids production from biomass-based feedstocks over ultrathin CdS nanosheets. Nat. Commun. 11, 4899 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Xue, Z. et al. Efficient light-driven reductive amination of furfural to furfurylamine over ruthenium-cluster catalyst. J. Energy Chem. 76, 239–248 (2023).

    Article  CAS  Google Scholar 

  43. Kisch, H. Semiconductor photocatalysis for chemoselective radical coupling reactions. Acc. Chem. Res. 50, 1002–1010 (2017).

    Article  CAS  PubMed  Google Scholar 

  44. Kisch, A. S. C. Semiconductor Photocatalysis Vol. 12 (Wiley, 2014).

  45. Gerischer, H. Charge transfer processes at semiconductor–electrolyte interfaces in connection with problems of catalysis. Surf. Sci. 18, 97–122 (1969).

    Article  CAS  Google Scholar 

  46. Yayla, H. G., Wang, H., Tarantino, K. T., Orbe, H. S. & Knowles, R. R. Catalytic ring-opening of cyclic alcohols enabled by PCET activation of strong O-H bonds. J. Am. Chem. Soc. 138, 10794–10797 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Zhou, P. et al. Metal single atom strategy greatly boosts photocatalytic methyl activation and C-C coupling for the coproduction of high-value-added multicarbon compounds and hydrogen. ACS Catal. 10, 9109–9114 (2020).

    Article  CAS  Google Scholar 

  48. Kasap, H., Achilleos, D. S., Huang, A. & Reisner, E. Photoreforming of lignocellulose into H2 using nanoengineered carbon nitride under benign conditions. J. Am. Chem. Soc. 140, 11604–11607 (2018).

    Article  CAS  PubMed  Google Scholar 

  49. Lam, E. et al. Comproportionation of CO2 and cellulose to formate using a floating semiconductor-enzyme photoreforming catalyst. Angew. Chem. Int. Ed. 62, e202215894 (2023).

    Article  CAS  Google Scholar 

  50. Wu, X. et al. Ligand-controlled photocatalysis of CdS quantum dots for lignin valorization under visible light. ACS Catal. 9, 8443–8451 (2019).

    Article  CAS  Google Scholar 

  51. Li, Y., Hu, Y., Peng, S., Lu, G. & Li, S. Synthesis of CdS nanorods by an ethylenediamine assisted hydrothermal method for photocatalytic hydrogen evolution. J. Phys. Chem. C 113, 9352–9358 (2009).

    Article  CAS  Google Scholar 

  52. Luo, N. et al. Visible-light-driven coproduction of diesel precursors and hydrogen from lignocellulose-derived methylfurans. Nat. Energy 4, 575–584 (2019).

    Article  CAS  Google Scholar 

  53. Gunawan, D. et al. Unraveling the structure–activity–selectivity relationships in furfuryl alcohol photoreforming to H2 and hydrofuroin over ZnxIn2S3+x photocatalysts. Appl. Catal. B 335, 122880 (2023).

    Article  CAS  Google Scholar 

  54. Wakerley, D. W. et al. Solar-driven reforming of lignocellulose to H2 with a CdS/CdOx photocatalyst. Nat. Energy 2, 17021 (2017).

    Article  CAS  Google Scholar 

  55. Liang, D. et al. Efficiently and selectively photocatalytic cleavage of C–C bond by C3N4 nanosheets: defect-enhanced engineering and rational reaction route. Appl. Catal. B 317, 121690 (2022).

    Article  CAS  Google Scholar 

  56. Zhang, Z., Wang, M., Zhou, H. & Wang, F. Surface sulfate ion on CdS catalyst enhances syngas generation from biopolyols. J. Am. Chem. Soc. 143, 6533–6541 (2021).

    Article  CAS  PubMed  Google Scholar 

  57. Ma, Y. et al. Photocatalytic H2 production on Pt/TiO2-SO42− with tuned surface-phase structures: enhancing activity and reducing CO formation. Energy Environ. Sci. 5, 6345–6351 (2012).

    Article  CAS  Google Scholar 

  58. Luo, N. et al. Photocatalytic oxidation-hydrogenolysis of lignin β-O-4 models via a dual light wavelength switching strategy. ACS Catal. 6, 7716–7721 (2016).

    Article  CAS  Google Scholar 

  59. Lv, D. et al. Effect of Pd and Au on hydrogen abstraction and C-C cleavage in photoconversion of glycerol: beyond charge separation. J. Phys. Chem. C 124, 20320–20327 (2020).

    Article  CAS  Google Scholar 

  60. Liu, H. et al. Photocatalytic cleavage of C-C bond in lignin models under visible light on mesoporous graphitic carbon nitride through ππ stacking interaction. ACS Catal. 8, 4761–4771 (2018).

    Article  CAS  Google Scholar 

  61. Bao, X. et al. Photocatalytic selective oxidation of HMF coupled with H2 evolution on flexible ultrathin g-C3N4 nanosheets with enhanced N-H interaction. ACS Catal. 12, 1919–1929 (2022).

    Article  CAS  Google Scholar 

  62. Han, P. et al. Promoting Ni(II) catalysis with plasmonic antennas. Chem 5, 2879–2899 (2019).

    Article  CAS  Google Scholar 

  63. Canlas, C. P. et al. Shape-selective sieving layers on an oxide catalyst surface. Nat. Chem. 4, 1030–1036 (2012).

    Article  CAS  PubMed  Google Scholar 

  64. Zhou, H. et al. Facet-dependent electron transfer regulates photocatalytic valorization of biopolyols. J. Am. Chem. Soc. 144, 21224–21231 (2022).

    Article  CAS  PubMed  Google Scholar 

  65. Chong, R. et al. Selective photocatalytic conversion of glycerol to hydroxyacetaldehyde in aqueous solution on facet tuned TiO2-based catalysts. Chem. Commun. 50, 165–167 (2014).

    Article  CAS  Google Scholar 

  66. Zhang, W.-M., Feng, K.-W., Hu, R.-G., Guo, Y.-J. & Li, Y. Visible-light-induced iron redox-catalyzed selective transformation of biomass into formic acid. Chem 9, 430–442 (2023).

    Article  CAS  Google Scholar 

  67. Kim, G., Lee, S.-H. & Choi, W. Glucose-TiO2 charge transfer complex-mediated photocatalysis under visible light. Appl. Catal. B 162, 463–469 (2015).

    Article  CAS  Google Scholar 

  68. Da Via, L., Recchi, C., Gonzalez-Yanez, E. O., Davies, T. E. & Lopez-Sanchez, J. A. Visible light selective photocatalytic conversion of glucose by TiO2. Appl. Catal. B 202, 281–288 (2017).

    Article  Google Scholar 

  69. Chai, Z. et al. Efficient visible light-driven splitting of alcohols into hydrogen and corresponding carbonyl compounds over a Ni-modified CdS photocatalyst. J. Am. Chem. Soc. 138, 10128–10131 (2016).

    Article  CAS  PubMed  Google Scholar 

  70. Gao, Z., Luo, N., Huang, Z., Taylor, S. H. & Wang, F. Controlling radical intermediates in photocatalytic conversion of low-carbon-number alcohols. ACS Sustain. Chem. Eng. 9, 6188–6202 (2021).

    Article  CAS  Google Scholar 

  71. Nguyen, S. T., Murray, P. R. D. & Knowles, R. R. Light-driven depolymerization of native lignin enabled by proton coupled electron transfer. ACS Catal. 10, 800–805 (2020).

    Article  CAS  Google Scholar 

  72. Zhang, C. et al. Catalytic strategies and mechanism analysis orbiting the center of critical intermediates in lignin depolymerization. Chem. Rev. 123, 4510–4601 (2023).

    Article  CAS  PubMed  Google Scholar 

  73. Wang, Y., Liu, Y., He, J. & Zhang, Y. Redox-neutral photocatalytic strategy for selective C-C bond cleavage of lignin and lignin models via PCET process. Sci. Bull. 64, 1658–1666 (2019).

    Article  CAS  Google Scholar 

  74. Sun, L. et al. Photocatalytic reductive C-O bond scission promoted by low-work-function Cd single atoms and clusters. Chem. Commun. 59, 2102–2105 (2023).

    Article  CAS  Google Scholar 

  75. Luo, L. et al. Selective photoelectrocatalytic glycerol oxidation to dihydroxyacetone via enhanced middle hydroxyl adsorption over a Bi2O3-incorporated catalyst. J. Am. Chem. Soc. 144, 7720–7730 (2022).

    Article  CAS  PubMed  Google Scholar 

  76. Wang, H. et al. High quantum efficiency of hydrogen production from methanol aqueous solution with PtCu−TiO2 photocatalysts. Nat. Mater. 22, 619–626 (2023).

    Article  CAS  PubMed  Google Scholar 

  77. Liu, M. et al. Direct catalytic methanol-to-ethanol photo-conversion via methyl carbene. Chem 5, 858–867 (2019).

    Article  CAS  Google Scholar 

  78. Luo, J., Zhang, X., Lu, J. & Zhang, J. Fine tuning the redox potentials of carbazolic porous organic frameworks for visible-light photoredox catalytic degradation of lignin β-O-4 models. ACS Catal. 7, 5062–5070 (2017).

    Article  CAS  Google Scholar 

  79. Wessig, P. & Muehling, O. Spin-center shift (SCS)—a versatile concept in biological and synthetic chemistry. Eur. J. Org. Chem. 2007, 2219–2232 (2007).

    Article  Google Scholar 

  80. Zhang, F. L., Li, B., Houk, K. N. & Wang, Y. F. Application of the spin-center shift in organic synthesis. JACS Au. 2, 1032–1042 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Leifert, D. & Studer, A. The persistent radical effect in organic synthesis. Angew. Chem. Int. Ed. 59, 74–108 (2019).

    Article  Google Scholar 

  82. Zhang, M. et al. Selective valorization of 5-hydroxymethylfurfural to 2,5-diformylfuran using atmospheric O2 and MAPbBr3 perovskite under visible light. ACS Catal. 10, 14793–14800 (2020).

    Article  CAS  Google Scholar 

  83. Chang, J. N. et al. Covalent-bonding oxidation group and titanium cluster to synthesize a porous crystalline catalyst for selective photo-oxidation biomass valorization. Angew. Chem. Int. Ed. 61, e202209289 (2022).

    Article  CAS  Google Scholar 

  84. Zhang, Y., Zhang, N., Tang, Z.-R. & Xu, Y.-J. Identification of Bi2WO6 as a highly selective visible-light photocatalyst toward oxidation of glycerol to dihydroxyacetone in water. Chem. Sci. 4, 1820–1824 (2013).

    Article  CAS  Google Scholar 

  85. Xu, S. et al. Selective oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid using O2 and a photocatalyst of Co-thioporphyrazine bonded to g-C3N4. J. Am. Chem. Soc. 139, 14775–14782 (2017).

    Article  CAS  PubMed  Google Scholar 

  86. Zhang, Q. et al. Sunlight-driven photocatalytic oxidation of 5-hydroxymethylfurfural over a cuprous oxide-anatase heterostructure in aqueous phase. Appl. Catal. B 320, 122006 (2023).

    Article  CAS  Google Scholar 

  87. Asha, K. & Badamali, S. K. Highly efficient photocatalytic degradation of lignin by hydrogen peroxide under visible light. Mol. Catal. 497, 111236 (2020).

    Article  CAS  Google Scholar 

  88. Simon, T. et al. Redox shuttle mechanism enhances photocatalytic H2 generation on Ni-decorated CdS nanorods. Nat. Mater. 13, 1013–1018 (2014).

    Article  CAS  PubMed  Google Scholar 

  89. Huang, Z.-X. et al. Sub-10-nm anatase TiO2 nanoparticles for rapid photocatalytic H2 production from lignocellulosic biomass. J. Mol. Catal. A 11, 7488–7497 (2023).

    CAS  Google Scholar 

  90. Zhou, H., Wang, M. & Wang, F. Oxygen-controlled photo-reforming of biopolyols to CO over Z-scheme CdS@g-C3N4. Chem 8, 465–479 (2022).

    Article  CAS  Google Scholar 

  91. Zhang, Z., Wang, M. & Wang, F. Plasma-assisted construction of CdO quantum dots/CdS semi-coherent interface for the photocatalytic bio-CO evolution. Chem. Catal. 2, 1394–1406 (2022).

    Article  CAS  Google Scholar 

  92. Xia, T. et al. Sunlight-driven highly selective catalytic oxidation of 5-hydroxymethylfurfural towards tunable products. Angew. Chem. Int. Ed. 61, e202204225 (2022).

    Article  CAS  Google Scholar 

  93. DiMeglio, J. L., Breuhaus-Alvarez, A. G., Li, S. & Bartlett, B. M. Nitrate-mediated alcohol oxidation on cadmium sulfide photocatalysts. ACS Catal. 9, 5732–5741 (2019).

    Article  CAS  Google Scholar 

  94. Cha, H. G. & Choi, K. S. Combined biomass valorization and hydrogen production in a photoelectrochemical cell. Nat. Chem. 7, 328–333 (2015).

    Article  CAS  PubMed  Google Scholar 

  95. Li, S. et al. Photocatalytic chemoselective C-C bond cleavage at room temperature in dye-sensitized photoelectrochemical cells. ACS Catal. 11, 3771–3781 (2021).

    Article  CAS  Google Scholar 

  96. Zhao, L.-M. et al. Photocatalysis with quantum dots and visible light: selective and efficient oxidation of alcohols to carbonyl compounds through a radical relay process in water. Angew. Chem. Int. Ed. 56, 3020–3024 (2017).

    Article  CAS  Google Scholar 

  97. Lu, H. et al. Selective oxidation of sacrificial ethanol over TiO2-based photocatalysts during water splitting. Energy Environ. Sci. 4, 3384–3388 (2011).

    Article  CAS  Google Scholar 

  98. Yang, P. et al. Selective photocatalytic C–C coupling of bioethanol into 2,3-butanediol over Pt-decorated hydroxyl-group-tunable TiO2 photocatalysts. ChemCatChem 7, 2384–2390 (2015).

    Article  CAS  Google Scholar 

  99. Huang, Z. et al. Controlling the reactions of free radicals with metal-radical interaction. Chin. J. Catal. 45, 120–131 (2023).

    Article  CAS  Google Scholar 

  100. Huang, Z. et al. Enhanced photocatalytic alkane production from fatty acid decarboxylation via inhibition of radical oligomerization. Nat. Catal. 3, 170–178 (2020).

    Article  CAS  Google Scholar 

  101. Fu, H. et al. Selectivity control in photocatalytic transfer hydrogenation of bio-based aldehydes. ChemCatChem 14, e202200120 (2022).

    Article  CAS  Google Scholar 

  102. Chen, K., Schwarz, J., Karl, T. A., Chatterjee, A. & Konig, B. Visible light induced redox neutral fragmentation of 1,2-diol derivatives. Chem. Commun. 55, 13144–13147 (2019).

    Article  CAS  Google Scholar 

  103. Yamagata, S., Nakabayashi, S., Sancier, K. M. & Fujishima, A. Photocatalytic oxidation of alcohols on TiO2. Bull. Chem. Soc. Jpn 61, 3429–3434 (1988).

    Article  CAS  Google Scholar 

  104. Luo, N. et al. Photocatalytic coproduction of deoxybenzoin and H2 through tandem redox reactions. ACS Catal. 10, 762–769 (2020).

    Article  CAS  Google Scholar 

  105. Yoo, H. et al. Enhancing photocatalytic β-O-4 bond cleavage in lignin model compounds by silver-exchanged cadmium sulfide. ACS Catal. 10, 8465–8475 (2020).

    Article  CAS  Google Scholar 

  106. Ren, P. et al. Stepwise photoassisted decomposition of carbohydrates to H2. Joule 7, 333–349 (2023).

    Article  CAS  Google Scholar 

  107. Zuo, Z. & MacMillan, D. W. Decarboxylative arylation of α-amino acids via photoredox catalysis: a one-step conversion of biomass to drug pharmacophore. J. Am. Chem. Soc. 136, 5257–5260 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Nguyen, V. T. et al. Alkene synthesis by photocatalytic chemoenzymatically compatible dehydrodecarboxylation of carboxylic acids and biomass. ACS Catal. 9, 9485–9498 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Xu, Q. et al. Photocatalytic 2-iodoethanol coupling to produce 1,4-butanediol mediated by TiO2 and a catalytic nickel complex. Angew. Chem. Int. Ed. 62, e202301668 (2023).

    Article  CAS  Google Scholar 

  110. Fan, Y. et al. Hydrofunctionalization of olefins to value-added chemicals via photocatalytic coupling. Green Chem. 20, 3450–3456 (2018).

    Article  CAS  Google Scholar 

  111. Kim, S. et al. Computational study of bond dissociation enthalpies for a large range of native and modified Lignins. J. Phys. Chem. Lett. 2, 2846–2852 (2011).

    Article  CAS  Google Scholar 

  112. Liu, C. et al. Nanowire-bacteria hybrids for unassisted solar carbon dioxide fixation to value-added chemicals. Nano Lett. 15, 3634–3639 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Lei, L., Wang, Y., Zhang, Z., An, J. & Wang, F. Transformations of biomass, its derivatives, and downstream chemicals over ceria catalysts. ACS Catal. 10, 8788–8814 (2020).

    Article  CAS  Google Scholar 

  114. Djellabi, R. et al. Combined conversion of lignocellulosic biomass into high-value products with ultrasonic cavitation and photocatalytic produced reactive oxygen species—a review. Bioresour. Technol. 368, 128333 (2023).

    Article  CAS  PubMed  Google Scholar 

  115. Sudarsh, A., Remya, N. & Swain, A. Recent research advancements in microwave photocatalytic treatment of aqueous solutions. Environ. Monit. Assess. 195, 142 (2022).

    Article  PubMed  Google Scholar 

  116. Wang, Z. H., Li, Y. Y., Wu, C. & Tsang, S. C. E. Electric-/magnetic-field-assisted photocatalysis: mechanisms and design strategies. Joule 6, 1798–1825 (2022).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (22025206, 22172157, 22202199 and 21991090), the Dalian Innovation Support Plan for High Level Talents (2022RG13), DICP (grant no. DICP I202326) and the Youth Innovation Promotion Association (YIPA) of the Chinese Academy of Sciences (2023192). We also acknowledge instrumental support from the Liaoning Key Laboratory of Biomass Conversion for Energy and Material. Y. Zou is acknowledged for drawing the Graphical Abstract.

Author information

Authors and Affiliations

Authors

Contributions

F.W. and N.L. conceived the outline of this Review. Z.G., P.R. and N.L. composed the figures, and wrote and revised the manuscript. L.S. collected and organized the references.

Corresponding authors

Correspondence to Nengchao Luo or Feng Wang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Synthesis thanks Ridha Djellabi and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editor: Alexandra Groves, in collaboration with the Nature Synthesis team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, Z., Ren, P., Sun, L. et al. Photocatalysts for steering charge transfer and radical reactions in biorefineries. Nat. Synth 3, 438–451 (2024). https://doi.org/10.1038/s44160-024-00499-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44160-024-00499-4

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing