Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Engineered enzymes for the synthesis of pharmaceuticals and other high-value products

Abstract

Catalysis has a central role in organic synthetic methodology, especially in stereoselective reactions. In many reactions, enantioselectivity is made possible through the use of chiral transition metal catalysts. For decades, enzymes had a minor role, but this changed with the advent of directed evolution in the 1990s. The experimental implementation of evolving stereoselective mutants convinced at least some chemists of the potential of enzymes in catalytic processes. Subsequently, efficient mutagenesis methods emerged, including the combinatorial active-site saturation test, iterative saturation mutagenesis and rational enzyme design, such as focused rational iterative site-specific mutagenesis, that led to the widely held belief that essentially any desired transformation is possible. In this Review, we introduce these mutagenesis strategies and then discuss individual cases of enzyme-catalysed syntheses of chiral therapeutic drugs and other value-added products as well as the associated reaction mechanisms. Also, the type of value-added product, the enzyme used and preferential mutagenesis method are discussed.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Summary of the protein engineering of enzymes that catalyse organic reactions.
Fig. 2: Regio- and stereoselective oxidation of C–H bonds catalysed by CYP monooxygenases or peroxygenases.
Fig. 3: Stereoselective ADHs reduce prochiral ketones.
Fig. 4: Mutants of BVMOs as catalysts in regioselective BV oxidations and stereoselective sulfoxidation reactions.
Fig. 5: Reprogramming the epoxide hydrolase LEH beyond the normal hydrolytic reaction mode.
Fig. 6: Lipase-catalysed hydrolysis of a racemic acid ethyl ester.
Fig. 7: Selective glycosylation leading to valorized products.
Fig. 8: Biocatalytic amine synthesis using transaminases.
Fig. 9: Synthesis of natural and unnatural terpenes by terpene synthases.

Similar content being viewed by others

References

  1. Chen, K. & Arnold, F. H. Tuning the activity of an enzyme for unusual environments: sequential random mutagenesis of subtilisin E for catalysis in dimethylformamide. Proc. Natl Acad. Sci. USA 90, 5618–5622 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Reetz, M. T. et al. Creation of enantioselective biocatalysts for organic chemistry by in vitro evolution. Angew. Chem. Int. Ed. 36, 2830–2832 (1997).

    Article  CAS  Google Scholar 

  3. Sheldon, R. A. & van Pelt, S. Enzyme immobilisation in biocatalysis: why, what and how. Chem. Soc. Rev. 42, 6223–6235 (2013).

    Article  CAS  PubMed  Google Scholar 

  4. Guisan, J. M. (ed) Immobilization of Enzymes and Cells Vol. 1051 (Humana, 2013).

  5. Qu, G. et al. The crucial role of methodology development in directed evolution of selective enzymes. Angew. Chem. Int. Ed. 59, 13204–13231 (2020).

    Article  CAS  Google Scholar 

  6. Reetz, M. T. & Carballeira, J. D. Iterative saturation mutagenesis (ISM) for rapid directed evolution of functional enzymes. Nat. Protoc. 2, 891–903 (2007).

    Article  CAS  PubMed  Google Scholar 

  7. Reetz, M. T. et al. Expanding the range of substrate acceptance of enzymes: combinatorial active-site saturation test. Angew. Chem. Int. Ed. 44, 4192–4196 (2005).

    Article  CAS  Google Scholar 

  8. Yang, Y. & Arnold, F. H. Navigating the unnatural reaction space: directed evolution of heme proteins for selective carbene and nitrene transfer. Acc. Chem. Res. 54, 1209–1225 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Hartwig, J. F. Catalyst-controlled site-selective bond activation. Acc. Chem. Res. 50, 549–555 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Heinisch, T. & Ward, T. R. Artificial metalloenzymes based on the biotin–streptavidin technology: challenges and opportunities. Acc. Chem. Res. 49, 1711–1721 (2016).

    Article  CAS  PubMed  Google Scholar 

  11. Athavale, S. V. et al. Enzymatic nitrogen insertion into unactivated C–H bonds. J. Am. Chem. Soc. 144, 19097–19105 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Miller, D. C. et al. Combining chemistry and protein engineering for new-to-nature biocatalysis. Nat. Synth. 1, 18–23 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Estell, D. A., Graycar, T. P. & Wells, J. A. Engineering an enzyme by site-directed mutagenesis to be resistant to chemical oxidation. J. Biol. Chem. 260, 6518–6521 (1985).

    Article  CAS  PubMed  Google Scholar 

  14. Lovelock, S. L. et al. The road to fully programmable protein catalysis. Nature 606, 49–58 (2022).

    Article  CAS  PubMed  Google Scholar 

  15. Marques, S. M. et al. Web-based tools for computational enzyme design. Curr. Opin. Struct. Biol. 69, 19–34 (2021).

    Article  CAS  PubMed  Google Scholar 

  16. Siegel, J. B. et al. Computational design of an enzyme catalyst for a stereoselective bimolecular Diels–Alder reaction. Science 329, 309–313 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Li, D., Wu, Q. & Reetz, M. T. Focused rational iterative site-specific mutagenesis (FRISM). Methods Enzymol. 643, 225–242 (2020).

    Article  CAS  PubMed  Google Scholar 

  18. Reetz, M. T. Making enzymes suitable for organic chemistry by rational protein design. ChemBioChem 23, e202200049 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kearsey, L. J. et al. Biosynthesis of cannabigerol and cannabigerolic acid, the gateways to further cannabinoid production. Synth. Biol. 8, ysad010 (2023).

    Article  Google Scholar 

  20. Bhattacharya, S. et al. NMR-guided directed evolution. Nature 610, 389–393 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Hecko, S. et al. Enlightening the path to protein engineering: chemoselective turn-on probes for high-throughput screening of enzymatic activity. Chem. Rev. 123, 2832–2901 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Xue, P., Si, T. & Zhao, H. Optically guided mass spectrometry to screen microbial colonies for directed enzyme evolution. Methods Enzymol. 644, 255–273 (2020).

    Article  CAS  PubMed  Google Scholar 

  23. Sheldon, R. A. & Woodley, J. M. Role of biocatalysis in sustainable chemistry. Chem. Rev. 118, 801–838 (2018).

    Article  CAS  PubMed  Google Scholar 

  24. Volk, M. J. et al. Metabolic engineering: methodologies and applications. Chem. Rev. 123, 5521–5570 (2023).

    Article  CAS  PubMed  Google Scholar 

  25. Fischer, E. Einfluss der Configuration auf die Wirkung der Enzyme. Ber. Dtsch. Chem. Ges. 27, 2985–2993 (1894).

    Article  CAS  Google Scholar 

  26. Lichtenthaler, F. W. 100 years ‘Schlüssel-Schloss-Prinzip’: what made Emil Fischer use this analogy? Angew. Chem. Int. Ed. 33, 2364–2374 (1995).

    Article  Google Scholar 

  27. Acevedo-Rocha, C. G. et al. Pervasive cooperative mutational effects on multiple catalytic enzyme traits emerge via long-range conformational dynamics. Nat. Commun. 12, 1621 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Lee, J. & Goodey, N. M. Catalytic contributions from remote regions of enzyme structure. Chem. Rev. 111, 7595–7624 (2011).

    Article  CAS  PubMed  Google Scholar 

  29. Li, T. E. & Hammes-Schiffer, S. QM/MM modeling of vibrational polariton induced energy transfer and chemical dynamics. J. Am. Chem. Soc. 145, 377–384 (2023).

    Article  CAS  PubMed  Google Scholar 

  30. Nussinov, R. et al. AlphaFold, allosteric, and orthosteric drug discovery: ways forward. Drug Discov. Today 28, 103551 (2023).

    Article  CAS  PubMed  Google Scholar 

  31. Liu, B. et al. Crystal structures of herbicide-detoxifying esterase reveal a lid loop affecting substrate binding and activity. Nat. Commun. 14, 4343 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Lemay-St-Denis, C., Doucet, N. & Pelletier, J. N. Integrating dynamics into enzyme engineering. Protein Eng. Des. Sel. 35, gzac015 (2022).

    Article  PubMed  Google Scholar 

  33. Hong, N. S. et al. The evolution of multiple active site configurations in a designed enzyme. Nat. Commun. 9, 3900 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Fisher, G. et al. Allosteric rescue of catalytically impaired ATP phosphoribosyltransferase variants links protein dynamics to active-site electrostatic preorganisation. Nat. Commun. 13, 7607 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ni, Y. et al. How green is biocatalysis? To calculate is to know. ChemCatChem 6, 930–943 (2014).

    Article  CAS  Google Scholar 

  36. Sheldon, R. A. The E factor at 30: a passion for pollution prevention. Green Chem. 25, 1704–1728 (2023).

    Article  CAS  Google Scholar 

  37. Massad, I. et al. Stereoselective synthesis through remote functionalization. Nat. Synth. 1, 37–48 (2022).

    Article  Google Scholar 

  38. Hogg, J. A. Steroids, the steroid community, and Upjohn in perspective: a profile of innovation. Steroids 57, 593–616 (1992).

    Article  CAS  PubMed  Google Scholar 

  39. Ortiz de Montellano, P. R. Hydrocarbon hydroxylation by cytochrome P450 enzymes. Chem. Rev. 110, 932–948 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Whitehouse, C. J. et al. P450BM3 (CYP102A1): connecting the dots. Chem. Soc. Rev. 41, 1218–1260 (2012).

    Article  CAS  PubMed  Google Scholar 

  41. Zhang, L. & Wang, Q. Harnessing P450 enzyme for biotechnology and synthetic biology. ChemBioChem 23, e202100439 (2022).

    Article  CAS  PubMed  Google Scholar 

  42. Acevedo-Rocha, C. G. et al. P450-catalyzed regio- and diastereoselective steroid hydroxylation: efficient directed evolution enabled by mutability landscaping. ACS Catal. 8, 3395–3410 (2018).

    Article  CAS  Google Scholar 

  43. Kensch, O. et al. P450 BM3 monooxygenase variants for C19-hydroxylation of steroids. Bayer AG patent application US patent 2023/0212532 A1 (2023).

  44. Kille, S. et al. Regio- and stereoselectivity of P450-catalysed hydroxylation of steroids controlled by laboratory evolution. Nat. Chem. 3, 738–743 (2011).

    Article  CAS  PubMed  Google Scholar 

  45. Li, A. et al. Regio- and stereoselective steroid hydroxylation at the C7 by cytochrome P450 monooxygenase mutants. Angew. Chem. Int. Ed. 59, 12499–12505 (2020).

    Article  CAS  Google Scholar 

  46. Li, Y. et al. Peroxygenase-catalyzed selective synthesis of calcitriol starting from alfacalcidol. Antioxidants 11, 1044 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Wang, X. et al. Engineering cytochrome P450BM3 enzymes for direct nitration of unsaturated hydrocarbons. Angew. Chem. Int. Ed. 62, e202217678 (2023).

    Article  CAS  Google Scholar 

  48. Turner, N. J. & O’Reilly, E. Biocatalytic retrosynthesis. Nat. Chem. Biol. 9, 285–288 (2013).

    Article  CAS  PubMed  Google Scholar 

  49. Gao, D. et al. Efficient production of l-homophenylalanine by enzymatic-chemical cascade catalysis. Angew. Chem. Int. Ed. 61, e202207077 (2022).

    Article  CAS  Google Scholar 

  50. Meng, F. & Ellis, T. The second decade of synthetic biology: 2010–2020. Nat. Commun. 11, 5174 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Sun, Z. et al. Catalytic asymmetric reduction of difficult-to-reduce ketones: triple code saturation mutagenesis of an alcohol dehydrogenase. ACS Catal. 6, 1598–1605 (2016).

    Article  CAS  Google Scholar 

  52. Sardauna, A. E. Biocatalytic asymmetric reduction of prochiral bulky-bulky ketones. Mol. Catal. 541, 113099 (2023).

    Article  CAS  Google Scholar 

  53. Reetz, M. T. & Borras, M. G. The unexplored importance of fleeting chiral intermediates in enzyme-catalyzed reactions. J. Am. Chem. Soc. 143, 14939–14950 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Grein, F. et al. Theoretical and experimental studies on the Baeyer−Villiger oxidation of ketones and the effect of α-halo substituents. J. Org. Chem. 71, 861–872 (2006).

    Article  CAS  PubMed  Google Scholar 

  55. Li, G. et al. Overriding traditional electronic effects in biocatalytic Baeyer–Villiger reactions by directed evolution. J. Am. Chem. Soc. 140, 10464–10472 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Zhang, Y. et al. Engineering of cyclohexanone monooxygenase for the enantioselective synthesis of (S)-omeprazole. ACS Sustain. Chem. Eng. 7, 7218–7226 (2019).

    Article  CAS  Google Scholar 

  57. Kagan, H. B. in Organosulfur Chemistry in Asymmetric Synthesis (eds Toru, T. & Bolm, C.) 1–29 (Wiley-VCH, 2008).

  58. Zhang, Y. et al. Organocatalytic asymmetric synthesis of indole-based chiral heterocycles: strategies, reactions, and outreach. Acc. Chem. Res. 53, 425–446 (2020).

    Article  CAS  PubMed  Google Scholar 

  59. Qin, L. et al. Biosynthesis of chiral cyclic and heterocyclic alcohols via CO/C–H/C–O asymmetric reactions. Catal. Sci. Technol. 11, 2637–2651 (2021).

    Article  CAS  Google Scholar 

  60. Gilmore, K. & Mohamed, R. K. The Baldwin rules: revised and extended. WIREs Comput. Mol. Sci. 6, 487–514 (2016).

    Article  CAS  Google Scholar 

  61. Li, J. et al. Rational enzyme design for enabling biocatalytic Baldwin cyclization and asymmetric synthesis of chiral heterocycles. Nat. Commun. 13, 7813 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Lind, M. E. S. & Himo, F. Quantum chemistry as a tool in asymmetric biocatalysis: limonene epoxide hydrolase test case. Angew. Chem. Int. Ed. 52, 4563–4567 (2013).

    Article  CAS  Google Scholar 

  63. Janda, K. D. & Shevlin, C. G. Antibody catalysis of a disfavored chemical transformation. Science 259, 490–493 (1993).

    Article  CAS  PubMed  Google Scholar 

  64. Li, X. et al. Key residues responsible for enhancement of catalytic efficiency of Thermomyces lanuginosus lipase Lip revealed by complementary protein engineering strategy. J. Biotechnol. 188, 29–35 (2014).

    Article  CAS  PubMed  Google Scholar 

  65. Zhang, Q. et al. Efficient chemoenzymatic synthesis of optically active pregabalin from racemic isobutylsuccinonitrile. Org. Process Res. Dev. 23, 2042–2049 (2019).

    Article  CAS  Google Scholar 

  66. Martinez, C. A. et al. Development of a chemoenzymatic manufacturing process for pregabalin. Org. Process Res. Dev. 12, 392–398 (2008).

    Article  CAS  Google Scholar 

  67. Dong, N. Q. et al. UDP-glucosyltransferase regulates grain size and abiotic stress tolerance associated with metabolic flux redirection in rice. Nat. Commun. 11, 2629 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Li, J. et al. Near-perfect control of the regioselective glucosylation enabled by rational design of glycosyltransferases. Green Synth. Catal. 2, 45–53 (2021).

    Article  Google Scholar 

  69. Savile, C. K. et al. Biocatalytic asymmetric synthesis of chiral amines from ketones applied to sitagliptin manufacture. Science 329, 305–309 (2010).

    Article  CAS  PubMed  Google Scholar 

  70. Kelly, S. A. et al. Application of ω-transaminases in the pharmaceutical industry. Chem. Rev. 118, 349–367 (2018).

    Article  CAS  PubMed  Google Scholar 

  71. Ghislieri, D. & Turner, N. J. Biocatalytic approaches to the synthesis of enantiomerically pure chiral amines. Top. Catal. 57, 284–300 (2014).

    Article  CAS  Google Scholar 

  72. Ignea, C. et al. Synthesis of 11-carbon terpenoids in yeast using protein and metabolic engineering. Nat. Chem. Biol. 14, 1090–1098 (2018).

    Article  CAS  PubMed  Google Scholar 

  73. Whittington, D. A. et al. Bornyl diphosphate synthase: structure and strategy for carbocation manipulation by a terpenoid cyclase. Proc. Natl Acad. Sci. USA 99, 15375–15380 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Hyatt, D. C. et al. Structure of limonene synthase, a simple model for terpenoid cyclase catalysis. Proc. Natl Acad. Sci. USA 104, 5360–5365 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. O’Maille, P. et al. Quantitative exploration of the catalytic landscape separating divergent plant sesquiterpene synthases. Nat. Chem. Biol. 4, 617–623 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  76. Driller, R. et al. Towards a comprehensive understanding of the structural dynamics of a bacterial diterpene synthase during catalysis. Nat. Commun. 9, 3971 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Hammer, S. C. et al. Squalene hopene cyclases: highly promiscuous and evolvable catalysts for stereoselective C–C and C–X bond formation. Curr. Opin. Chem. Biol. 17, 293–300 (2013).

    Article  CAS  PubMed  Google Scholar 

  78. Zhang, J. et al. A microbial supply chain for production of the anti-cancer drug vinblastine. Nature 609, 341–347 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Schneider, A., Jegl, P. & Hauer, B. Stereoselective directed cationic cascades enabled by molecular anchoring in terpene cyclases. Angew. Chem. Int. Ed. 60, 13251–13256 (2021).

    Article  CAS  Google Scholar 

  80. Li, F., Deng, H. & Renata, H. Remote B-ring oxidation of sclareol with an engineered P450 facilitates divergent access to complex terpenoids. J. Am. Chem. Soc. 144, 7616–7621 (2022).

    Article  CAS  PubMed  Google Scholar 

  81. Grobe, S. et al. Engineering regioselectivity of a P450 monooxygenase enables the synthesis of ursodeoxycholic acid via 7β-hydroxylation of lithocholic acid. Angew. Chem. Int. Ed. 60, 753–757 (2021).

    Article  CAS  Google Scholar 

  82. Bokel, A., Hutter, M. C. & Urlacher, V. B. Molecular evolution of a cytochrome P450 for the synthesis of potential antidepressant (2R,6R)-hydroxynorketamine. Chem. Comm. 57, 520–523 (2021).

    Article  CAS  PubMed  Google Scholar 

  83. Zhang, X. et al. Rationally controlling selective steroid hydroxylation via scaffold sampling of a P450 family. ACS Catal. 13, 1280–1289 (2023).

    Article  CAS  Google Scholar 

  84. Zhang, J. et al. Chemodivergent C(sp3)–H and C(sp2)–H cyanomethylation using engineered carbene transferases. Nat. Catal. 6, 152–160 (2023).

    Article  CAS  PubMed  Google Scholar 

  85. Qu, G. et al. Unlocking the stereoselectivity and substrate acceptance of enzymes: proline-induced loop engineering test. Angew. Chem. Int. Ed. 61, e202110793 (2022).

    Article  CAS  Google Scholar 

  86. Qu, G. et al. Laboratory evolution of an alcohol dehydrogenase towards enantioselective reduction of difficult-to-reduce ketones. Bioresour. Bioprocess. 6, 18 (2019).

    Article  Google Scholar 

  87. Langley, C. et al. Expansion of the catalytic repertoire of alcohol dehydrogenases in plant metabolism. Angew. Chem. Int. Ed. 61, e202210934 (2022).

    Article  CAS  Google Scholar 

  88. Schotte, C. et al. Directed biosynthesis of mitragynine stereoisomers. J. Am. Chem. Soc. 145, 4957–4963 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Chang, S. et al. Engineering aldehyde dehydrogenase PaALDH70140 from Pseudomonas aeruginosa PC-1 with improved catalytic properties for 5-hydroxymethyl-2-furancarboxylic acid synthesis. Biochem. Eng. J. 192, 108835 (2023).

    Article  CAS  Google Scholar 

  90. Hamnevik, E. et al. Directed evolution of alcohol dehydrogenase for improved stereoselective redox transformations of 1-phenylethane-1,2-diol and its corresponding acyloin. Biochemistry 57, 1059–1062 (2018).

    Article  CAS  PubMed  Google Scholar 

  91. Ye, W. et al. Engineering a medium-chain alcohol dehydrogenase for efficient synthesis of (S)-N−Boc-3−pyrrolidinol by adjusting the conformational dynamics of loops. ChemCatChem 15, e202201175 (2023).

    Article  CAS  Google Scholar 

  92. Chen, X. et al. Efficient reductive desymmetrization of bulky 1,3-cyclodiketones enabled by structure-guided directed evolution of a carbonyl reductase. Nat. Catal. 2, 931–941 (2019).

    Article  CAS  Google Scholar 

  93. Ren, S.-M. et al. Identification two key residues at the intersection of domains of a thioether monooxygenase for improving its sulfoxidation performance. Biotechnol. Bioeng. 118, 737–744 (2021).

    Article  CAS  PubMed  Google Scholar 

  94. Seo, E.-J. et al. Multi-level engineering of Baeyer–Villiger monooxygenase-based Escherichia coli biocatalysts for the production of C9 chemicals from oleic acid. Metab. Eng. 54, 137–144 (2019).

    Article  CAS  PubMed  Google Scholar 

  95. Seo, E.-J. et al. Enzyme access tunnel engineering in Baeyer–Villiger monooxygenases to improve oxidative stability and biocatalyst performance. Adv. Synth. Catal. 364, 555–564 (2022).

    Article  CAS  Google Scholar 

  96. Li, Y. et al. Asymmetric synthesis of sterically hindered 1-substituted tetrahydro-β-carbolines enabled by imine reductase: enzyme discovery, protein engineering, and reaction development. Org. Lett. 25, 1285–1289 (2023).

    Article  CAS  PubMed  Google Scholar 

  97. Chen, F.-F. et al. Discovery of an imine reductase for reductive amination of carbonyl compounds with sterically challenging amines. J. Am. Chem. Soc. 145, 4015–4025 (2023).

    Article  CAS  Google Scholar 

  98. Kumar, R. et al. Biocatalytic reductive amination from discovery to commercial manufacturing applied to abrocitinib JAK1 inhibitor. Nat. Catal. 4, 775–782 (2021).

    Article  CAS  Google Scholar 

  99. Gilio, A. K. et al. A reductive aminase switches to imine reductase mode for a bulky amine substrate. ACS Catal. 13, 1669–1677 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Wang, Z. et al. Semi-rational design of diaminopimelate dehydrogenase from Symbiobacterium thermophilum improved its activity toward hydroxypyruvate for d-serine synthesis. Catalysts 13, 576 (2023).

    Article  CAS  Google Scholar 

  101. Cakar, M. M. et al. Engineered formate dehydrogenase from Chaetomium thermophilum, a promising enzymatic solution for biotechnical CO2 fixation. Biotechnol. Lett. 42, 2251–2262 (2020).

    Article  CAS  PubMed  Google Scholar 

  102. Hayashi, T. et al. Evolved aliphatic halogenases enable regiocomplementary C–H functionalization of a pharmaceutically relevant compound. Angew. Chem. Int. Ed. 58, 18535–18539 (2019).

    Article  CAS  Google Scholar 

  103. Tanvir Rahman, M. et al. An engineered variant of MECR reductase reveals indispensability of long-chain acyl-ACPs for mitochondrial respiration. Nat. Commun. 14, 619 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Jung, D.-Y., Li, X. & Li, Z. Engineering of hydroxymandelate oxidase and cascade reactions for high-yielding conversion of racemic mandelic acids to phenylglyoxylic acids and (R)- and (S)‑phenylglycines. ACS Catal. 13, 1522–1532 (2023).

    Article  CAS  Google Scholar 

  105. Ma, Y. et al. Engineering a transaminase for the efficient synthesis of a key intermediate for rimegepant. Org. Process Res. Dev. 26, 1971–1977 (2022).

    Article  CAS  Google Scholar 

  106. Jeon, H. et al. Creation of a (R)‑β-transaminase by directed evolution of d‑amino acid aminotransferase. ACS Catal. 12, 13207–13214 (2022).

    Article  CAS  Google Scholar 

  107. Zhang, Z. et al. Active-site engineering of ω-transaminase from Ochrobactrum anthropi for preparation of l-2-aminobutyric acid. BMC Biotechnol. 21, 55 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  108. Meng, Q. et al. Computational redesign of an ω-transaminase from Pseudomonas jessenii for asymmetric synthesis of enantiopure bulky amines. ACS Catal. 11, 10733–10747 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Tao, X. et al. Producing 2-O-α-d-glucopyranosyl-l-ascorbic acid by modified cyclodextrin glucosyltransferase and isoamylase. Appl. Microbiol. Biotechnol. 107, 1233–1241 (2023).

    Article  CAS  PubMed  Google Scholar 

  110. Bi, H. et al. Biosynthesis of a rosavin natural product in Escherichia coli by glycosyltransferase rational design and artificial pathway construction. Metab. Eng. 69, 15–25 (2022).

    Article  CAS  PubMed  Google Scholar 

  111. Dong, C. et al. Rational design of geranylgeranyl diphosphate synthase enhances carotenoid production and improves photosynthetic efficiency in Nicotiana tabacum. Sci. Bull. 67, 315–327 (2022).

    Article  CAS  Google Scholar 

  112. Chen, X. et al. Total enzymatic synthesis of cis-α-irone from a simple carbon source. Nat. Commun. 13, 7421 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Li, F.-L. et al. Reprogramming epoxide hydrolase to improve enantioconvergence in hydrolysis of styrene oxide scaffolds. Adv. Synth. Catal. 362, 4699–4706 (2020).

    Article  CAS  Google Scholar 

  114. Liu, Y.-Y. et al. Remarkable improvement in the regiocomplementarity of a Glycine max epoxide hydrolase by reshaping its substrate-binding pocket for the enantioconvergent preparation of (R)-hexane-1,2-diol. Mol. Catal. 514, 111851 (2021).

    Article  CAS  Google Scholar 

  115. Zhang, L. et al. Mutation of an atypical oxirane oxyanion hole improves regioselectivity of the α/β-fold epoxide hydrolase Alp1U. J. Biol. Chem. 295, 16987–16997 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Zorn, K. et al. Alteration of chain length selectivity of Candida antarctica lipase A by semi-rational design for the enrichment of erucic and gondoic fatty acids. Adv. Synth. Catal. 360, 4115–4131 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Li, D.-Y. et al. Electronic effect-guided rational design of Candida antarctica lipase B for kinetic resolution towards diarylmethanols. Adv. Synth. Catal. 363, 1867–1872 (2021).

    Article  CAS  Google Scholar 

  118. Quaglia, D. et al. Holistic engineering of Cal-A lipase chainlength selectivity identifies triglyceride binding hot-spot. PLoS ONE 14, e0210100 (2018).

    Article  Google Scholar 

  119. Ma, F. et al. Efficient molecular evolution to generate enantioselective enzymes using a dual-channel microfluidic droplet screening platform. Nat. Commun. 9, 1030 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  120. Li, L. et al. Enhancing the hydrolysis and acyl transfer activity of carboxylesterase DLFae4 by a combinational mutagenesis and in-silico method. Foods 12, 1169 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Wang, R. et al. Engineered glycosidase for significantly improved production of naturally rare vina-ginsenoside R7. J. Agric. Food Chem. 71, 3852–3861 (2023).

    Article  CAS  PubMed  Google Scholar 

  122. Tournier, V. et al. An engineered PET depolymerase to break down and recycle plastic bottles. Nature 580, 216–219 (2020).

    Article  CAS  PubMed  Google Scholar 

  123. Tian, C. et al. Engineering substrate specificity of HAD phosphatases and multienzyme systems development for the thermodynamic-driven manufacturing sugars. Nat. Commun. 13, 3582 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Payer, S. E. et al. A rational active-site redesign converts a decarboxylase into a C=C hydratase: ‘tethered acetate’ supports enantioselective hydration of 4-hydroxystyrenes. ACS Catal. 8, 2438–2445 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Demming, R. M. et al. Asymmetric enzymatic hydration of unactivated, aliphatic alkenes. Angew. Chem. Int. Ed. 58, 173–177 (2019).

    Article  CAS  Google Scholar 

  126. Gajdos, M. et al. Chiral alcohols from alkenes and water: directed evolution of a styrene hydratase. Angew. Chem. Int. Ed. 62, e202215093 (2023).

    Article  CAS  Google Scholar 

  127. McDonald, A. D. et al. Engineering enzyme substrate scope complementarity for promiscuous cascade synthesis of 1,2-amino alcohols. Angew. Chem. Int. Ed. 61, e202212637 (2022).

    Article  CAS  Google Scholar 

  128. Garrabou, X. et al. Stereodivergent evolution of artificial enzymes for the Michael reaction. Angew. Chem. Int. Ed. 57, 5288–5291 (2018).

    Article  CAS  Google Scholar 

  129. Quan, Z. et al. Mechanism of the bifunctional multiple product sesterterpene synthase AcAS from Aspergillus calidoustus. Angew. Chem. Int. Ed. 61, e202117273 (2022).

    Article  CAS  Google Scholar 

  130. Tomoiaga, R. B. et al. Phenylalanine ammonia-lyases: combining protein engineering and natural diversity. Appl. Microbiol. Biotechnol. 107, 1243–1256 (2023).

    Article  CAS  PubMed  Google Scholar 

  131. Cui, Y. et al. Development of a versatile and efficient C–N lyase platform for asymmetric hydroamination via computational enzyme redesign. Nat. Catal. 4, 364–373 (2021).

    Article  CAS  Google Scholar 

  132. Winn, M. et al. Discovery, characterization and engineering of ligases for amide synthesis. Nature 593, 391–398 (2021).

    Article  CAS  PubMed  Google Scholar 

  133. Bosshart, A. et al. Directed divergent evolution of a thermostable d-tagatose epimerase towards improved activity for two hexose substrates. ChemBioChem 16, 592–601 (2015).

    Article  CAS  PubMed  Google Scholar 

  134. Khersonsky, O. et al. Automated design of efficient and functionally diverse enzyme repertoires. Mol. Cell. 72, 178–186.e5 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Ren, X., Liu, N., Chandgude, A. L. & Fasan, R. An enzymatic platform for the highly enantioselective and stereodivergent construction of cyclopropyl-δ-lactones. Angew. Chem. Int. Ed. 59, 21634–21639 (2020).

    Article  CAS  Google Scholar 

  136. Sun, N. et al. Enantioselective [2+2]-cycloadditions with triplet photoenzymes. Nature 611, 715–720 (2020).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China (grant no. 2019YFA0905100), the Tianjin Synthetic Biotechnology Innovation Capacity Improvement Project (grant no. TSBICIP-CXRC-009), the National Natural Science Foundation of China (grant nos. 32171268 and 32171474) and the Natural Science Foundation Applying System of Tianjin (grant no. 19JCQNJC09100). M.T.R. thanks the Max-Planck-Society for support. G.Q. thanks the Youth Innovation Promotion Association, CAS (2021175) for financial support.

Author information

Authors and Affiliations

Authors

Contributions

M.T.R., Q.G. and Z.S. contributed to discussions and wrote the paper.

Corresponding authors

Correspondence to Manfred T. Reetz, Ge Qu or Zhoutong Sun.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Synthesis thanks Frank Hollmann, Oleg Larionov and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editor: Alison Stoddart, in collaboration with the Nature Synthesis team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reetz, M.T., Qu, G. & Sun, Z. Engineered enzymes for the synthesis of pharmaceuticals and other high-value products. Nat. Synth 3, 19–32 (2024). https://doi.org/10.1038/s44160-023-00417-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44160-023-00417-0

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing