Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Catalytic desymmetrization reactions to synthesize all-carbon quaternary stereocentres

Abstract

The term all-carbon quaternary stereocentre refers to a chiral carbon atom featuring four different carbon substituents. Such structural motifs are prominent in natural products, drugs and bioactive compounds. Incorporating such conformationally constrained stereocentres into molecules allows the exploration of chemical spaces with enhanced potency, selectivity and other drug-related properties. Exploiting efficient catalytic enantioselective methods to construct all-carbon quaternary stereocentres is highly desirable for drug discovery, but constitutes a long-term challenge in organic synthesis. The desymmetrization strategy has been established as a powerful approach to this end and has found wide application in the total synthesis of natural products and bioactive compounds. The attractive features of this approach include its use of symmetric substrates that can be relatively easily prepared and that endow the products with a synthetic handle for further diversification, alleviating the steric repulsion that needs to be overcome to construct quaternary carbons, creating multiple stereocentres via one manipulation, and putting a wide range of catalytic reactions to use. This Review highlights the key advances in this area during the period 2016–2022, points out the challenges to be overcome, and outlines the synthetic opportunities still to be explored.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Towards all-carbon quaternary stereocentres.
Fig. 2: Various desymmetric reactions of 1,3-diketones.
Fig. 3: Desymmetric reactions of prochiral malonic acid and derivatives and malononitriles.
Fig. 4: Desymmetrization of cyclobutanones.
Fig. 5: Desymmetric transformations of small rings.
Fig. 6: Desymmetrization of prochiral enones.
Fig. 7: Desymmetric transformations of 4,4-disubstituted cyclopentene.
Fig. 8: Miscellaneous desymmetrization reactions.

Similar content being viewed by others

References

  1. Talele, T. T. Opportunities for tapping into three-dimensional chemical space through a quaternary carbon. J. Med. Chem. 63, 13291–13315 (2020).

    Article  CAS  PubMed  Google Scholar 

  2. Ling, T. & Rivas, F. All-carbon quaternary centers in natural products and medicinal chemistry: recent advances. Tetrahedron 72, 6729–6777 (2016).

    Article  CAS  Google Scholar 

  3. Liu, Y., Han, S. J., Liu, W. B. & Stoltz, B. M. Catalytic enantioselective construction of quaternary stereocenters: assembly of key building blocks for the synthesis of biologically active molecules. Acc. Chem. Res. 48, 740–751 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Zeng, X. P., Cao, Z. Y., Wang, Y. H., Zhou, F. & Zhou, J. Catalytic enantioselective desymmetrization reactions to all-carbon quaternary stereocenters. Chem. Rev. 116, 7330–7396 (2016).

    Article  CAS  PubMed  Google Scholar 

  5. Zhou, F. et al. Catalytic enantioselective construction of vicinal quaternary carbon stereocenters. Chem. Sci. 11, 9341–9365 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Xu, Y., Zhai, T.-Y., Xu, Z. & Ye, L.-W. Recent advances towards organocatalytic enantioselective desymmetrizing reactions. Trends Chem. 4, 191–205 (2022).

    Article  CAS  Google Scholar 

  7. Petersen, K. S. Nonenzymatic enantioselective synthesis of all-carbon quaternary centers through desymmetrization. Tetrahedron Lett. 56, 6523–6535 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Nájera, C., Foubelo, F., Sansano, J. M. & Yus, M. Enantioselective desymmetrization reactions in asymmetric catalysis. Tetrahedron 106-107, 132629 (2022).

    Article  Google Scholar 

  9. Xu, P. & Huang, Z. Catalytic reductive desymmetrization of malonic esters. Nat. Chem. 13, 634–642 (2021).

    Article  CAS  PubMed  Google Scholar 

  10. Yang, B. et al. Desymmetrization of 1,3-diones by catalytic enantioselective condensation with hydrazine. J. Am. Chem. Soc. 143, 4179–4186 (2021).

    Article  CAS  PubMed  Google Scholar 

  11. Xu, P., Shen, C., Xu, A., Low, K. H. & Huang, Z. Desymmetric cyanosilylation of acyclic 1,3-diketones. Angew. Chem. Int. Ed. 61, e202208443 (2022).

    Article  CAS  Google Scholar 

  12. Hu, X. D. et al. Enantioselective synthesis of α-all-carbon quaternary center-containing carbazolones via amino-palladation/desymmetrizing nitrile addition cascade. J. Am. Chem. Soc. 143, 3734–3740 (2021).

    Article  CAS  PubMed  Google Scholar 

  13. Xu, P., Liu, S. & Huang, Z. Desymmetric partial reduction of malonic esters. J. Am. Chem. Soc. 144, 6918–6927 (2022).

    Article  CAS  PubMed  Google Scholar 

  14. Lu, Z. et al. Total synthesis of aplysiasecosterol A. J. Am. Chem. Soc. 140, 9211–9218 (2018).

    Article  CAS  PubMed  Google Scholar 

  15. Lu, X. L., Qiu, Y., Yang, B., He, H. & Gao, S. Asymmetric total synthesis of (+)-xestoquinone and (+)-adociaquinones A and B. Chem. Sci. 12, 4747–4752 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Chegondi, R., Patel, S. M., Maurya, S. & Donthoju, A. Organocatalytic enantioselective desymmetrization of prochiral 2,2‐disubstituted cyclic 1,3‐diones. Asian J. Org. Chem. 10, 1267–1281 (2021).

    Article  CAS  Google Scholar 

  17. Ding, Y. X., Zhu, Z. H., Yu, C. B. & Zhou, Y. G. Recent advances in reductive desymmetrization of diketones. Asian J. Org. Chem. 9, 1942–1952 (2020).

    Article  CAS  Google Scholar 

  18. Clarke, C., Incerti-Pradillos, C. A. & Lam, H. W. Enantioselective nickel-catalyzed anti-carbometallative cyclizations of alkynyl electrophiles enabled by reversible alkenylnickel E/Z isomerization. J. Am. Chem. Soc. 138, 8068–8071 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Yan, J. & Yoshikai, N. Cobalt-catalyzed arylative cyclization of acetylenic esters and ketones with arylzinc reagents through 1,4-cobalt migration. ACS Cat. 6, 3738–3742 (2016).

    Article  CAS  Google Scholar 

  20. Groves, A. et al. Catalytic enantioselective arylative cyclizations of alkynyl 1,3-diketones by 1,4-rhodium(I) migration. Chem. Sci. 11, 2759–2764 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Wu, X., Chen, Z., Bai, Y. B. & Dong, V. M. Diastereodivergent construction of bicyclic γ-lactones via enantioselective ketone hydroacylation. J. Am. Chem. Soc. 138, 12013–12016 (2016).

    Article  CAS  PubMed  Google Scholar 

  22. Brooks, D. W., Grothaus, P. G. & Irwin, W. L. Chiral cyclopentanoid synthetic intermediates via asymmetric microbial reduction of prochiral 2,2-disubstituted cyclopentanediones. J. Org. Chem. 47, 2820–2821 (1982).

    Article  CAS  Google Scholar 

  23. Trost, B. M. & Curran, D. P. Synthesis of dl-coriolin. J. Am. Chem. Soc. 103, 7380–7381 (1981).

    Article  CAS  Google Scholar 

  24. Brooks, D. W., Grothaus, P. G. & Palmer, J. T. Synthetic studies of trichothecenes, an enantioselective synthesis of a C-ring precursor of anguidine. Tetrahedron Lett. 23, 4187–4190 (1982).

    Article  CAS  Google Scholar 

  25. Breitler, S. & Carreira, E. M. Total synthesis of (+)-crotogoudin. Angew. Chem. Int. Ed. 52, 11168–11171 (2013).

    Article  CAS  Google Scholar 

  26. Chen, X. et al. Efficient reductive desymmetrization of bulky 1,3-cyclodiketones enabled by structure-guided directed evolution of a carbonyl reductase. Nat. Catal. 2, 931–941 (2019).

    Article  CAS  Google Scholar 

  27. Gong, Q., Wen, J. & Zhang, X. Desymmetrization of cyclic 1,3-diketones via Ir-catalyzed hydrogenation: an efficient approach to cyclic hydroxy ketones with a chiral quaternary carbon. Chem. Sci. 10, 6350–6353 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ghosh, B., Balhara, R., Jindal, G. & Mukherjee, S. Catalytic enantioselective desymmetrizing Fischer indolization through dynamic kinetic resolution. Angew. Chem. Int. Ed. 60, 9086–9092 (2021).

    Article  CAS  Google Scholar 

  29. Yao, L., Zhu, Q., Wei, L., Wang, Z. F. & Wang, C. J. Dysprosium(III)-catalyzed ring-opening of meso-epoxides: desymmetrization by remote stereocontrol in a thiolysis/elimination sequence. Angew. Chem. Int. Ed. 55, 5829–5833 (2016).

    Article  CAS  Google Scholar 

  30. Zhu, C., Wang, D., Zhao, Y., Sun, W. Y. & Shi, Z. Enantioselective palladium-catalyzed intramolecular α-arylative desymmetrization of 1,3-diketones. J. Am. Chem. Soc. 139, 16486–16489 (2017).

    Article  CAS  PubMed  Google Scholar 

  31. García-Urdiales, E., Alfonso, I. & Gotor, V. Enantioselective enzymatic desymmetrizations in organic synthesis. Chem. Rev. 105, 313–354 (2005).

    Article  PubMed  Google Scholar 

  32. Karad, S. N., Panchal, H., Clarke, C., Lewis, W. & Lam, H. W. Enantioselective synthesis of chiral cyclopent-2-enones by nickel-catalyzed desymmetrization of malonate esters. Angew. Chem. Int. Ed. 57, 9122–9125 (2018).

    Article  CAS  Google Scholar 

  33. O’Brien, L., Karad, S. N., Lewis, W. & Lam, H. W. Rhodium-catalyzed arylative cyclization of alkynyl malonates by 1,4-rhodium(I) migration. Chem. Commun. 55, 11366–11369 (2019).

    Article  Google Scholar 

  34. Xie, C. et al. Enantioselective synthesis of quaternary oxindoles: desymmetrizing Staudinger–aza-Wittig reaction enabled by a bespoke HypPhos oxide catalyst. J. Am. Chem. Soc. 144, 21318–21327 (2022).

    Article  CAS  PubMed  Google Scholar 

  35. Cai, L. et al. Catalytic asymmetric Staudinger–aza-Wittig reaction for the synthesis of heterocyclic amines. J. Am. Chem. Soc. 141, 9537–9542 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Lin, B. et al. Gold-catalyzed desymmetric lactonization of alkynylmalonic acids enabled by chiral bifunctional P,N ligands. Angew. Chem. Int. Ed. 61, e202201739 (2022).

    Article  CAS  Google Scholar 

  37. Wu, W.-B., Yu, J.-S. & Zhou, J. Catalytic enantioselective cyanation: recent advances and perspectives. ACS Catal. 10, 7668–7690 (2020).

    Article  CAS  Google Scholar 

  38. Eliel, E. L., Wilen, S. H. & Mander, L. N. Stereochemistry of Organic Compounds (Wiley, 1994).

    Google Scholar 

  39. Yokoyama, M., Sugai, T. & Ohta, H. Asymmetric hydrolysis of a disubstituted malononitrile by the aid of a microorganism. Tetrahedron: Asymmetry 4, 1081–1084 (1993).

    Article  CAS  Google Scholar 

  40. Wang, M. X. Enantioselective biotransformations of nitriles in organic synthesis. Acc. Chem. Res. 48, 602–611 (2015).

    Article  CAS  PubMed  Google Scholar 

  41. Tanaka, K., Suzuki, N. & Nishida, G. Cationic rhodium(I)/modified-BINAP catalyzed [2+2+2] cycloaddition of alkynes with nitriles. Eur. J. Org. Chem. 2006, 3917–3922 (2006).

    Article  Google Scholar 

  42. Kamezaki, S., Akiyama, S., Kayaki, Y., Kuwata, S. & Ikariya, T. Asymmetric nitrile-hydration with bifunctional ruthenium catalysts bearing chiral N-sulfonyldiamine ligands. Tetrahedron: Asymmetry 21, 1169–1172 (2010).

    Article  CAS  Google Scholar 

  43. Lu, Z. et al. Enantioselective assembly of cycloenones with a nitrile-containing all-carbon quaternary center from malononitriles enabled by Ni catalysis. J. Am. Chem. Soc. 142, 7328–7333 (2020).

    Article  CAS  PubMed  Google Scholar 

  44. Zheng, Y. Q., Li, C. L., Liu, W. B. & Yu, Z. X. DFT study of mechanism and stereochemistry of nickel-catalyzed trans-arylative desymmetrizing cyclization of alkyne-tethered malononitriles. J. Org. Chem. 87, 16079–16083 (2022).

    Article  CAS  PubMed  Google Scholar 

  45. Ni, D., Wei, Y. & Ma, D. Thiourea-catalyzed asymmetric Michael addition of carbazolones to 2-chloroacrylonitrile: total synthesis of 5,22-dioxokopsane, kopsinidine C, and demethoxycarbonylkopsin. Angew. Chem. Int. Ed. 57, 10207–10211 (2018).

    Article  CAS  Google Scholar 

  46. Zhang, H., Li, W., Hu, X. D. & Liu, W. B. Enantioselective synthesis of fused isocoumarins via palladium-catalyzed annulation of alkyne-tethered malononitriles. J. Org. Chem. 86, 10799–10811 (2021).

    Article  CAS  PubMed  Google Scholar 

  47. Cai, J. et al. Ni-catalyzed enantioselective [2 + 2 + 2] cycloaddition of malononitriles with alkynes. Chem 7, 799–811 (2021).

    Article  CAS  Google Scholar 

  48. Li, K. et al. Enantioselective synthesis of pyridines with all-carbon quaternary carbon centers via cobalt-catalyzed desymmetric [2 + 2 + 2] cycloaddition. Angew. Chem. Int. Ed. 60, 20204–20209 (2021).

    Article  CAS  Google Scholar 

  49. Chen, Z. H. et al. Enantioselective nickel-catalyzed reductive aryl/alkenyl-cyano cyclization coupling to all-carbon quaternary stereocenters. J. Am. Chem. Soc. 144, 4776–4782 (2022).

    Article  CAS  PubMed  Google Scholar 

  50. Sietmann, J. & Wahl, J. M. Enantioselective desymmetrization of cyclobutanones: a speedway to molecular complexity. Angew. Chem. Int. Ed. 59, 6964–6974 (2020).

    Article  CAS  Google Scholar 

  51. Wang, M., Zhong, C. & Lu, P. Enantioselective functionalization of prochiral cyclobutanones and cyclobutenones. Synlett 32, 1253–1259 (2021).

    Article  CAS  Google Scholar 

  52. Cao, J. & Xu, L.-W. Palladium- and nickel-catalyzed cascade enantioselective ring-opening/coupling reactions of cyclobutanones. Chem. Commun. 59, 3373–3382 (2023).

    Article  CAS  Google Scholar 

  53. Zhou, X. & Dong, G. Nickel-catalyzed chemo- and enantioselective coupling between cyclobutanones and allenes: rapid synthesis of [3.2.2] bicycles. Angew. Chem. Int. Ed. 55, 15091–15095 (2016).

    Article  CAS  Google Scholar 

  54. Cao, J. et al. Pd-catalyzed enantioselective ring opening/cross-coupling and cyclopropanation of cyclobutanones. Angew. Chem. Int. Ed. 58, 897–901 (2019).

    Article  CAS  Google Scholar 

  55. Sun, Y. L. et al. Enantioselective cross-exchange between C–I and C–C σ bonds. Angew. Chem. Int. Ed. 58, 6747–6751 (2019).

    Article  CAS  Google Scholar 

  56. Sun, F. N. et al. Enantioselective palladium/copper-catalyzed C–C σ-bond activation synergized with Sonogashira-type C(sp3)–C(sp) cross-coupling alkynylation. Chem. Sci. 10, 7579–7583 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Song, K.-L. et al. Palladium-catalyzed gaseous CO-free carbonylative C–C bond activation of cyclobutanones. Org. Chem. Front. 8, 3398–3403 (2021).

    Article  CAS  Google Scholar 

  58. Gan, W.-E., Cao, J. & Xu, L.-W. Palladium-catalyzed enantioselective domino ring-opening/Hiyama coupling of cyclobutanones: development and application to the synthesis of (+)-herbertene-1,14-diol. Org. Chem. Front. 9, 5798–5801 (2022).

    Article  CAS  Google Scholar 

  59. Hou, S. H. et al. Enantioselective type II cycloaddition of alkynes via C–C activation of cyclobutanones: rapid and asymmetric construction of [3.3.1] bridged bicycles. J. Am. Chem. Soc. 142, 13180–13189 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Yu, X., Zhang, Z. & Dong, G. Catalytic enantioselective synthesis of γ-lactams with β-quaternary centers via merging of C–C activation and sulfonyl radical migration. J. Am. Chem. Soc. 144, 9222–9228 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Hou, S. H., Yu, X., Zhang, R., Wagner, C. & Dong, G. Rhodium-catalyzed diastereo- and enantioselective divergent annulations between cyclobutanones and 1,5-enynes: rapid construction of complex C(sp3)-rich scaffolds. J. Am. Chem. Soc. 144, 22159–22169 (2022).

    Article  CAS  PubMed  Google Scholar 

  62. Wang, M., Chen, J., Chen, Z., Zhong, C. & Lu, P. Enantioselective desymmetrization of cyclobutanones enabled by synergistic palladium/enamine catalysis. Angew. Chem. Int. Ed. 57, 2707–2711 (2018).

    Article  CAS  Google Scholar 

  63. Teng, H. L. et al. Synthesis of chiral aminocyclopropanes by rare-earth-metal-catalyzed cyclopropene hydroamination. Angew. Chem. Int. Ed. 55, 15406–15410 (2016).

    Article  CAS  Google Scholar 

  64. Dian, L. & Marek, I. Rhodium-catalyzed arylation of cyclopropenes based on asymmetric direct functionalization of three-membered carbocycles. Angew. Chem. Int. Ed. 57, 3682–3686 (2018).

    Article  CAS  Google Scholar 

  65. Huang, W. & Meng, F. Cobalt-catalyzed diastereo- and enantioselective hydroalkylation of cyclopropenes with cobalt homoenolates. Angew. Chem. Int. Ed. 60, 2694–2698 (2021).

    Article  CAS  Google Scholar 

  66. Huang, Q., Chen, Y., Zhou, X., Dai, L. & Lu, Y. Nickel-hydride-catalyzed diastereo- and enantioselective hydroalkylation of cyclopropenes. Angew. Chem. Int. Ed. 61, e202210560 (2022).

    Article  CAS  Google Scholar 

  67. Teng, H. L., Luo, Y., Nishiura, M. & Hou, Z. Diastereodivergent asymmetric carboamination/annulation of cyclopropenes with aminoalkenes by chiral lanthanum catalysts. J. Am. Chem. Soc. 139, 16506–16509 (2017).

    Article  CAS  PubMed  Google Scholar 

  68. Wang, X. B. et al. Controllable Si–C bond activation enables stereocontrol in the palladium-catalyzed [4+2] annulation of cyclopropenes with benzosilacyclobutanes. Angew. Chem. Int. Ed. 59, 790–797 (2020).

    Article  Google Scholar 

  69. Yang, W. & Sun, J. Organocatalytic enantioselective synthesis of 1,4-dioxanes and other oxa-heterocycles by oxetane desymmetrization. Angew. Chem. Int. Ed. 55, 1868–1871 (2016).

    Article  CAS  Google Scholar 

  70. Zhang, R., Guo, W., Duan, M., Houk, K. N. & Sun, J. Asymmetric desymmetrization of oxetanes for the synthesis of chiral tetrahydrothiophenes and tetrahydroselenophenes. Angew. Chem. Int. Ed. 58, 18055–18060 (2019).

    Article  CAS  Google Scholar 

  71. Qian, D., Chen, M., Bissember, A. C. & Sun, J. Counterion-induced asymmetric control in ring-opening of azetidiniums: facile access to chiral amines. Angew. Chem. Int. Ed. 57, 3763–3766 (2018).

    Article  CAS  Google Scholar 

  72. Das, T. Desymmetrization of cyclopentene-1,3-diones via alkylation, arylation, amidation and cycloaddition reactions. ChemistrySelect 5, 14484–14509 (2020).

    Article  CAS  Google Scholar 

  73. Zhuo, S. et al. Access to all-carbon spirocycles through a carbene and thiourea cocatalytic desymmetrization cascade reaction. Angew. Chem. Int. Ed. 58, 1784–1788 (2019).

    Article  CAS  Google Scholar 

  74. Zhu, T. et al. Carbene-catalyzed desymmetrization and direct construction of arenes with all-carbon quaternary chiral center. Angew. Chem. Int. Ed. 58, 15778–15782 (2019).

    Article  CAS  Google Scholar 

  75. Hu, J. M. et al. Chiral N-heterocyclic-carbene-catalyzed cascade asymmetric desymmetrization of cyclopentenediones with enals: access to optically active 1,3-indandione derivatives. Org. Lett. 21, 8582–8586 (2019).

    Article  CAS  PubMed  Google Scholar 

  76. Zhou, H. Q. et al. Enantioselective palladium-catalyzed C(sp2)–C(sp2) σ bond activation of cyclopropenones by merging desymmetrization and (3 + 2) spiroannulation with cyclic 1,3-diketones. Chem. Sci. 12, 13737–13743 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Chen, B., He, C.-Y., Chu, W.-D. & Liu, Q.-Z. Recent advances in the asymmetric transformations of achiral cyclohexadienones. Org. Chem. Front. 8, 825–843 (2021).

    Article  CAS  Google Scholar 

  78. Coutant, C., De Bonfils, P., Nun, P. & Coeffard, V. Asymmetric organocatalyzed intermolecular functionalization of cyclohexanone-derived dienones. Chem. Rec. 23, e202300042 (2023).

    Article  CAS  PubMed  Google Scholar 

  79. Shu, T. & Cossy, J. Asymmetric desymmetrization of alkene-, alkyne- and allene-tethered cyclohexadienones using transition metal catalysis. Chem. Soc. Rev. 50, 658–666 (2021).

    Article  CAS  PubMed  Google Scholar 

  80. Al-Tel, T. H. et al. Stereocontrolled transformations of cyclohexadienone derivatives to access stereochemically rich and natural product-inspired architectures. Org. Biomol. Chem. 18, 8526–8571 (2020).

    Article  CAS  PubMed  Google Scholar 

  81. Naganawa, Y., Kawagishi, M., Ito, J. & Nishiyama, H. Asymmetric induction at remote quaternary centers of cyclohexadienones by rhodium-catalyzed conjugate hydrosilylation. Angew. Chem. Int. Ed. 55, 6873–6876 (2016).

    Article  CAS  Google Scholar 

  82. Han, Y., Breitler, S., Zheng, S.-L. & Corey, E. J. Enantioselective conversion of achiral cyclohexadienones to chiral cyclohexenones by desymmetrization. Org. Lett. 18, 6172–6175 (2016).

    Article  CAS  PubMed  Google Scholar 

  83. You, C., Li, X., Gong, Q., Wen, J. & Zhang, X. Nickel-catalyzed desymmetric hydrogenation of cyclohexadienones: an efficient approach to all-carbon quaternary stereocenters. J. Am. Chem. Soc. 141, 14560–14564 (2019).

    Article  CAS  PubMed  Google Scholar 

  84. Qiao, Y. et al. Rhodium-catalyzed desymmetric arylation of γ,γ-disubsituted cyclohexadienones: asymmetric synthesis of chiral all-carbon quaternary centers. Org. Lett. 24, 1556–1560 (2022).

    Article  CAS  PubMed  Google Scholar 

  85. Li, Q.-H. et al. One-pot preparation of bridged tricyclic and fused tetracyclic scaffolds via rhodium(III)-catalyzed asymmetric borylative cyclization. Cell Rep. Phys. Sci. 1, 100222 (2020).

    Article  CAS  Google Scholar 

  86. Shu, T. et al. Asymmetric synthesis of spirocyclic β-lactams through copper-catalyzed Kinugasa/Michael domino reactions. Angew. Chem. Int. Ed. 57, 10985–10988 (2018).

    Article  CAS  Google Scholar 

  87. Ghosh, S. et al. Strong and confined acids control five stereogenic centers in catalytic asymmetric Diels–Alder reactions of cyclohexadienones with cyclopentadiene. Angew. Chem. Int. Ed. 59, 12347–12351 (2020).

    Article  CAS  Google Scholar 

  88. Knowe, M. T., Danneman, M. W., Sun, S., Pink, M. & Johnston, J. N. Biomimetic desymmetrization of a carboxylic acid. J. Am. Chem. Soc. 140, 1998–2001 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Wu, H., Wang, Q. & Zhu, J. Copper-catalyzed enantioselective arylative desymmetrization of prochiral cyclopentenes with diaryliodonium salts. Angew. Chem. Int. Ed. 57, 2721–2725 (2018).

    Article  CAS  Google Scholar 

  90. Yuan, Z. et al. Palladium-catalyzed asymmetric intramolecular reductive Heck desymmetrization of cyclopentenes: access to chiral bicyclo[3.2.1]octanes. Angew. Chem. Int. Ed. 58, 2884–2888 (2019).

    Article  CAS  Google Scholar 

  91. Yuan, Z. et al. Constructing chiral bicyclo[3.2.1]octanes via palladium-catalyzed asymmetric tandem Heck/carbonylation desymmetrization of cyclopentenes. Nat. Commun. 11, 2544 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Chen, G., Cao, J., Wang, Q. & Zhu, J. Desymmetrization of prochiral cyclopentenes enabled by enantioselective palladium-catalyzed oxidative Heck reaction. Org. Lett. 22, 322–325 (2020).

    Article  PubMed  Google Scholar 

  93. He, Y. P., Cao, J., Wu, H., Wang, Q. & Zhu, J. Catalytic enantioselective aminopalladation–Heck cascade. Angew. Chem. Int. Ed. 60, 7093–7097 (2021).

    Article  CAS  Google Scholar 

  94. Zhang, D., Li, M., Li, J., Lin, A. & Yao, H. Rhodium-catalyzed intermolecular enantioselective Alder-ene type reaction of cyclopentenes with silylacetylenes. Nat. Commun. 12, 6627 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Cai, M., Ma, J., Wu, Q., Lin, A. & Yao, H. Enantioselective syntheses of 2-azabicyclo[2.2.1]heptanes via Brønsted acid catalyzed ring-opening of meso-epoxides. Org. Lett. 24, 8791–8795 (2022).

    Article  CAS  PubMed  Google Scholar 

  96. Park, J. W., Chen, Z. & Dong, V. M. Rhodium-catalyzed enantioselective cycloisomerization to cyclohexenes bearing quaternary carbon centers. J. Am. Chem. Soc. 138, 3310–3313 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Huang, Y., Iwama, T. & Rawal, V. H. Highly enantioselective Diels–Alder reactions of 1-amino-3-siloxy-dienes catalyzed by Cr(III)–salen complexes. J. Am. Chem. Soc. 122, 7843–7844 (2000).

    Article  CAS  Google Scholar 

  98. Bao, X., Wang, Q. & Zhu, J. Palladium-catalyzed enantioselective desymmetrizing aza-Wacker reaction: development and application to the total synthesis of (-)-mesembrane and (+)-crinane. Angew. Chem. Int. Ed. 57, 1995–1999 (2018).

    Article  CAS  Google Scholar 

  99. Yu, Z. L. et al. Desymmetrization of unactivated bis-alkenes via chiral Brønsted acid-catalysed hydroamination. Chem. Sci. 11, 5987–5993 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Cai, J. et al. Enantioselective synthesis of β-quaternary carbon-containing chromanes and 3,4-dihydropyrans via Cu-catalyzed intramolecular C–O bond formation. Org. Lett. 21, 8852–8856 (2019).

    Article  CAS  PubMed  Google Scholar 

  101. Zhou, F., Liu, J. & Cai, Q. Transition metal catalyzed asymmetric aryl carbon–heteroatom bond coupling reactions. Synlett 27, 664–675 (2016).

    Article  CAS  Google Scholar 

  102. Luo, J., Cao, Q., Cao, X. & Zhao, X. Selenide-catalyzed enantioselective synthesis of trifluoromethylthiolated tetrahydronaphthalenes by merging desymmetrization and trifluoromethylthiolation. Nat. Commun. 9, 527 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  103. Lou, Y., Wei, J., Li, M. & Zhu, Y. Distal ionic substrate–catalyst interactions enable long-range stereocontrol: access to remote quaternary stereocenters through a desymmetrizing Suzuki–Miyaura reaction. J. Am. Chem. Soc. 144, 123–129 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Ding, Q., He, H. & Cai, Q. Chiral aryliodine-catalyzed asymmetric oxidative C–N bond formation via desymmetrization strategy. Org. Lett. 20, 4554–4557 (2018).

    Article  CAS  PubMed  Google Scholar 

  105. Zhang, Y. et al. Enantioselective synthesis of chiral oxygen-containing heterocycles using copper-catalyzed aryl C–O coupling reactions via asymmetric desymmetrization. J. Org. Chem. 82, 1458–1463 (2017).

    Article  CAS  PubMed  Google Scholar 

  106. Yang, W. et al. Copper‐catalysed double O‐arylation for enantioselective synthesis of oxa‐spirocycles. Adv. Synth. Catal. 361, 562–568 (2018).

    Article  Google Scholar 

  107. Cheng, Y.-F. et al. Catalytic enantioselective desymmetrizing functionalization of alkyl radicals via Cu(I)/CPA cooperative catalysis. Nat. Catal. 3, 401–410 (2020).

    Article  CAS  Google Scholar 

  108. Cheng, Y. F. et al. Cu-catalysed enantioselective radical heteroatomic S–O cross-coupling. Nat. Chem. 15, 395–404 (2022).

    Article  PubMed  Google Scholar 

  109. Yu, Z. L. et al. Cu(I)-catalyzed chemo- and enantioselective desymmetrizing C–O bond coupling of acyl radicals. J. Am. Chem. Soc. 145, 6535–6545 (2023).

    Article  CAS  PubMed  Google Scholar 

  110. Zhang, D., Chen, Y., Lai, Y. & Yang, X. Enantioselective desymmetrization of 2-substituted and 2,2-disubstituted 1,3-propanediamines via asymmetric para-aminations of anilines. Cell Rep. Phys. Sci. 2, 100413 (2021).

    Article  CAS  Google Scholar 

  111. Zhu, L., Zhang, L. & Luo, S. Catalytic desymmetrizing dehydrogenation of 4-substituted cyclohexanones through enamine oxidation. Angew. Chem. Int. Ed. 57, 2253–2258 (2018).

    Article  CAS  Google Scholar 

  112. Wei, Q. et al. Enantioselective access to γ-all-carbon quaternary center-containing cyclohexanones by palladium-catalyzed desymmetrization. ACS Cat. 10, 216–224 (2019).

    Article  Google Scholar 

  113. Zhou, H. et al. The silicon–hydrogen exchange reaction: a catalytic σ-bond metathesis approach to the enantioselective synthesis of enol silanes. J. Am. Chem. Soc. 142, 13695–13700 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Zhu, R. Y., Chen, L., Hu, X. S., Zhou, F. & Zhou, J. Enantioselective synthesis of P-chiral tertiary phosphine oxides with an ethynyl group via Cu(I)-catalyzed azide-alkyne cycloaddition. Chem. Sci. 11, 97–106 (2020).

    Article  CAS  PubMed  Google Scholar 

  115. Zhang, X. X., Gao, Y., Zhang, Y. X., Zhou, J. & Yu, J. S. Highly enantioselective construction of multifunctional silicon-stereogenic silacycles by asymmetric enamine catalysis. Angew. Chem. Int. Ed. 62, e202217724 (2023).

    Article  CAS  Google Scholar 

  116. Zu, B., Guo, Y. & He, C. Catalytic enantioselective construction of chiroptical boron-stereogenic compounds. J. Am. Chem. Soc. 143, 16302–16310 (2021).

    Article  CAS  PubMed  Google Scholar 

  117. Beletskaya, I. P., Nájera, C. & Yus, M. Stereodivergent catalysis. Chem. Rev. 118, 5080–5200 (2018).

    Article  CAS  PubMed  Google Scholar 

  118. Bressy, C., Merad, J., Candy, M. & Pons, J.-M. Catalytic enantioselective desymmetrization of meso compounds in total synthesis of natural products: towards an economy of chiral reagents. Synthesis 49, 1938–1954 (2017).

    Article  Google Scholar 

  119. Wu, M. H., Hansen, K. B. & Jacobsen, E. N. Regio- and enantioselective cyclization of epoxy alcohols catalyzed by a [CoIII(salen)] complex. Angew. Chem. Int. Ed. 38, 2012–2014 (1999).

    Article  CAS  Google Scholar 

  120. Spivey, A. C., Woodhead, S. J., Weston, M. & Andrews, B. I. Enantioselective desymmetrization of meso-decalin diallylic alcohols by a new Zr-based sharpless AE process: a novel approach to the asymmetric synthesis of polyhydroxylated Celastraceae sesquiterpene cores. Angew. Chem. Int. Ed. 40, 769–771 (2001).

    Article  CAS  Google Scholar 

  121. Stockdill, J. L., Behenna, D. C., McClory, A. & Stoltz, B. M. An efficient synthesis of the carbocyclic core of zoanthenol. Tetrahedron 65, 6571–6575 (2009).

    Article  CAS  Google Scholar 

  122. Hartung, J. & Grubbs, R. H. Highly Z-selective and enantioselective ring-opening/cross-metathesis catalyzed by a resolved stereogenic-at-Ru complex. J. Am. Chem. Soc. 135, 10183–10185 (2013).

    Article  CAS  PubMed  Google Scholar 

  123. Roux, C., Candy, M., Pons, J. M., Chuzel, O. & Bressy, C. Stereocontrol of all-carbon quaternary centers through enantioselective desymmetrization of meso primary diols by organocatalyzed acyl transfer. Angew. Chem. Int. Ed. 53, 766–770 (2014).

    Article  CAS  Google Scholar 

  124. Brimioulle, R., Lenhart, D., Maturi, M. M. & Bach, T. Enantioselective catalysis of photochemical reactions. Angew. Chem. Int. Ed. 54, 3872–3890 (2015).

    Article  CAS  Google Scholar 

  125. Jiao, K.-J. et al. The applications of electrochemical synthesis in asymmetric catalysis. Chem Catalysis 2, 3019–3047 (2022).

    Article  CAS  Google Scholar 

  126. Nagib, D. A. Asymmetric catalysis in radical chemistry. Chem. Rev. 122, 15989–15992 (2022).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful for financial support from the NSFC (21971067, 22171090), the National Key Research and Development Program of China (2020YFA0710200), the Shanghai Science and Technology Innovation Action Plan (20JC1416900), the Innovation Program of Shanghai Municipal Education Commission (2023ZKZD37) and the Key Research and Development Program of Hubei Province (2022BAD083).

Author information

Authors and Affiliations

Authors

Contributions

P.X., F.Z., L.Z and J.Z. contributed to the discussion and wrote the manuscript.

Corresponding authors

Correspondence to Feng Zhou, Lei Zhu or Jian Zhou.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Synthesis thanks Guangbin Dong, Jianwei Sun and Hequan Yao for their contribution to the peer review of this work. Primary Handling Editor: Peter Seavill, in collaboration with the Nature Synthesis team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, P., Zhou, F., Zhu, L. et al. Catalytic desymmetrization reactions to synthesize all-carbon quaternary stereocentres. Nat. Synth 2, 1020–1036 (2023). https://doi.org/10.1038/s44160-023-00406-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44160-023-00406-3

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing