Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Bifunctional organic photocatalysts for enantioselective visible-light-mediated photocatalysis

Abstract

This Review aims to highlight the developments in the field of visible-light-mediated enantioselective photocatalysis utilizing bifunctional organic photocatalysts by giving an overview of the existing hybrid structures and a summary of the reactions in which they have been employed. Organic bifunctional structures in this context are defined as the combination of organic photocatalyst moieties that can be activated by visible light with chiral catalysts responsible for enantioselective induction. An emphasis is put on comparing hybrid systems with dual-catalytic versions featuring two discrete catalysts, when applicable, while also pointing out limitations of current designs. Furthermore, mechanistic considerations are discussed, along with possible future directions in the development of new hybrid catalysts and the reactions that might benefit from these bifunctional structures.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Simplified overview of SET and EnT mechanisms in photocatalysis.
Fig. 2: Visible-light-mediated reactions catalysed by chiral bifunctional thioxanthone 1 and the structure of achiral thioxanthone 2.
Fig. 3: Enantioselective aerobic oxidation of β‑ketoesters utilizing bifunctional PCs.
Fig. 4: Bifunctional urea PCs.
Fig. 5: Chiral bifunctional photoaminocatalysts for the asymmetrical alkylation of aldehydes.
Fig. 6: Overview of visible-light-absorbing bifunctional CPA-PCs.
Fig. 7: Enantioselective reactions catalysed by chiral photo-phosphoric acid catalysts.
Fig. 8: Enantioselective reactions catalysed by chiral cyanoarene-based photo-phosphoric acid catalysts.

Similar content being viewed by others

References

  1. Bellotti, P., Huang, H.-M., Faber, T. & Glorius, F. Photocatalytic late-stage C–H functionalization. Chem. Rev. 123, 4237–4352 (2023).

    CAS  PubMed  Google Scholar 

  2. Chan, A. Y. et al. Metallaphotoredox: the merger of photoredox and transition metal catalysis. Chem. Rev. 122, 1485–1542 (2022).

    CAS  PubMed  Google Scholar 

  3. Hojo, R., Polgar, A. M. & Hudson, Z. M. Thermally activated delayed fluorescence sensitizers as organic and green alternatives in energy-transfer photocatalysis. ACS Sustain. Chem. Eng. 10, 9665–9678 (2022).

    CAS  Google Scholar 

  4. Rigotti, T. & Alemán, J. Visible light photocatalysis—from racemic to asymmetric activation strategies. Chem. Commun. 56, 11169–11190 (2020).

    CAS  Google Scholar 

  5. Marzo, L., Pagire, S. K., Reiser, O. & König, B. Visible-light photocatalysis: does it make a difference in organic synthesis? Angew. Chem. Int. Ed. 57, 10034–10072 (2018).

    CAS  Google Scholar 

  6. Strieth-Kalthoff, F., James, M. J., Teders, M., Pitzer, L. & Glorius, F. Energy transfer catalysis mediated by visible light: principles, applications, directions. Chem. Soc. Rev. 47, 7190–7202 (2018).

    CAS  PubMed  Google Scholar 

  7. Twilton, J. et al. The merger of transition metal and photocatalysis. Nat. Rev. Chem. 1, 0052 (2017).

  8. Romero, N. A. & Nicewicz, D. A. Organic photoredox catalysis. Chem. Rev. 116, 10075–10166 (2016).

    CAS  PubMed  Google Scholar 

  9. Prier, C. K., Rankic, D. A. & MacMillan, D. W. C. Visible light photoredox catalysis with transition metal complexes: applications in organic synthesis. Chem. Rev. 113, 5322–5363 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Großkopf, J., Kratz, T., Rigotti, T. & Bach, T. Enantioselective photochemical reactions enabled by triplet energy transfer. Chem. Rev. 122, 1626–1653 (2022).

    PubMed  Google Scholar 

  11. Verma, R. et al. Recent trends in photocatalytic enantioselective reactions. Top. Curr. Chem. 380, 48 (2022).

    CAS  Google Scholar 

  12. Hoffmann, N. Enantioselective synthesis of heterocyclic compounds using photochemical reactions. Photochem. Photobiol. Sci. 20, 1657–1674 (2021).

    CAS  PubMed  Google Scholar 

  13. Prentice, C., Morrisson, J., Smith, A. D. & Zysman-Colman, E. Recent developments in enantioselective photocatalysis. Beilstein J. Org. Chem. 16, 2363–2441 (2020).

    PubMed  PubMed Central  Google Scholar 

  14. Saha, D. Catalytic enantioselective radical transformations enabled by visible light. Chem. Asian J. 15, 2129–2152 (2020).

    CAS  PubMed  Google Scholar 

  15. Jiang, C., Chen, W., Zheng, W.-H. & Lu, H. Advances in asymmetric visible-light photocatalysis, 2015–2019. Org. Biomol. Chem. 17, 8673–8689 (2019).

    CAS  PubMed  Google Scholar 

  16. Silvi, M. & Melchiorre, P. Enhancing the potential of enantioselective organocatalysis with light. Nature 554, 41–49 (2018).

    CAS  PubMed  Google Scholar 

  17. Zou, Y.-Q., Hörmann, F. M. & Bach, T. Iminium and enamine catalysis in enantioselective photochemical reactions. Chem. Soc. Rev. 47, 278–290 (2018).

    CAS  PubMed  Google Scholar 

  18. Brenninger, C., Jolliffe, J. D. & Bach, T. Chromophore activation of α,β-unsaturated carbonyl compounds and its application to enantioselective photochemical reactions. Angew. Chem. Int. Ed. 57, 14338–14349 (2018).

    CAS  Google Scholar 

  19. Brimioulle, R., Lenhart, D., Maturi, M. M. & Bach, T. Enantioselective catalysis of photochemical reactions. Angew. Chem. Int. Ed. 54, 3872–3890 (2015).

    CAS  Google Scholar 

  20. Meggers, E. Asymmetric catalysis activated by visible light. Chem. Commun. 51, 3290–3301 (2015).

    CAS  Google Scholar 

  21. Roy, S., Paul, H. & Chatterjee, I. Light-mediated aminocatalysis: the dual-catalytic ability enabling new enantioselective route. Eur. J. Org. Chem. 2022, e202200446 (2022).

    CAS  Google Scholar 

  22. Guo, F., Wang, H., Ye, X. & Tan, C.-H. Advanced synthesis using photocatalysis involved dual catalytic system. Eur. J. Org. Chem. 2022, e202200326 (2022).

    CAS  Google Scholar 

  23. Yao, W., Bazan-Bergamino, E. A. & Ngai, M.-Y. Asymmetric photocatalysis enabled by chiral organocatalysts. ChemCatChem 14, e202101292 (2022).

    CAS  PubMed  Google Scholar 

  24. Mondal, S. et al. Enantioselective radical reactions using chiral catalysts. Chem. Rev. 122, 5842–5976 (2022).

    CAS  PubMed  Google Scholar 

  25. Genzink, M. J., Kidd, J. B., Swords, W. B. & Yoon, T. P. Chiral photocatalyst structures in asymmetric photochemical synthesis. Chem. Rev. 122, 1654–1716 (2022).

    CAS  PubMed  Google Scholar 

  26. Huang, X. & Meggers, E. Asymmetric photocatalysis with bis-cyclometalated rhodium complexes. Acc. Chem. Res. 52, 833–847 (2019).

    CAS  PubMed  Google Scholar 

  27. Rao, M., Wu, W. & Yang, C. Recent progress on the enantioselective excited-state photoreactions by pre-arrangement of photosubstrate(s). Green Synth. Catal. 2, 131–144 (2021).

    Google Scholar 

  28. Morimoto, M. et al. Advances in supramolecular host-mediated reactivity. Nat. Catal. 3, 969–984 (2020).

    CAS  Google Scholar 

  29. Crini, G. Review: a history of cyclodextrins. Chem. Rev. 114, 10940–10975 (2014).

    CAS  PubMed  Google Scholar 

  30. Page, C. G. et al. Quaternary charge-transfer complex enables photoenzymatic intermolecular hydroalkylation of olefins. J. Am. Chem. Soc. 143, 97–102 (2021).

    CAS  PubMed  Google Scholar 

  31. Sandoval, B. A. et al. Photoenzymatic reductions enabled by direct excitation of flavin-dependent ‘ene’-reductases. J. Am. Chem. Soc. 143, 1735–1739 (2021).

    CAS  PubMed  Google Scholar 

  32. Black, M. J. et al. Asymmetric redox-neutral radical cyclization catalysed by flavin-dependent ‘ene’-reductases. Nat. Chem. 12, 71–75 (2020).

    PubMed  Google Scholar 

  33. Biegasiewicz, K. F. et al. Photoexcitation of flavoenzymes enables a stereoselective radical cyclization. Science 364, 1166–1169 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Schirmer, T. E. & König, B. Ion-pairing catalysis in stereoselective, light-induced transformations. J. Am. Chem. Soc. 144, 19207–19218 (2022).

    CAS  PubMed  Google Scholar 

  35. Dexter, D. L. A theory of sensitized luminescence in solids. J. Chem. Phys. 21, 836–850 (1953).

    CAS  Google Scholar 

  36. Alonso, R. & Bach, T. A chiral thioxanthone as an organocatalyst for enantioselective [2+2] photocycloaddition reactions induced by visible light. Angew. Chem. Int. Ed. 53, 4368–4371 (2014).

    CAS  Google Scholar 

  37. Cauble, D. F., Lynch, V. & Krische, M. J. Studies on the enantioselective catalysis of photochemically promoted transformations: ‘sensitizing receptors’ as chiral catalysts. J. Org. Chem. 68, 15–21 (2003).

    CAS  PubMed  Google Scholar 

  38. Burg, F. & Bach, T. Lactam hydrogen bonds as control elements in enantioselective transition-metal-catalyzed and photochemical reactions. J. Org. Chem. 84, 8815–8836 (2019).

    CAS  PubMed  Google Scholar 

  39. Maturi, M. M. & Bach, T. Enantioselective catalysis of the intermolecular [2+2] photocycloaddition between 2-pyridones and acetylenedicarboxylates. Angew. Chem. Int. Ed. 53, 7661–7664 (2014).

    CAS  Google Scholar 

  40. Müller, C. et al. Enantioselective intramolecular [2+2]-photocycloaddition reactions of 4-substituted quinolones catalyzed by a chiral sensitizer with a hydrogen-bonding motif. J. Am. Chem. Soc. 133, 16689–16697 (2011).

    PubMed  Google Scholar 

  41. Müller, C., Bauer, A. & Bach, T. Light-driven enantioselective organocatalysis. Angew. Chem. Int. Ed. 48, 6640–6642 (2009).

    Google Scholar 

  42. Bauer, A., Westkämper, F., Grimme, S. & Bach, T. Catalytic enantioselective reactions driven by photoinduced electron transfer. Nature 436, 1139–1140 (2005).

    CAS  PubMed  Google Scholar 

  43. Tröster, A., Alonso, R., Bauer, A. & Bach, T. Enantioselective intermolecular [2+2] photocycloaddition reactions of 2(1H)-quinolones induced by visible light irradiation. J. Am. Chem. Soc. 138, 7808–7811 (2016).

    PubMed  PubMed Central  Google Scholar 

  44. Li, X., Christian, J. & Bach, T. Visible-light-mediated enantioselective photoreactions of 3-alkylquinolones with 4-O-tethered alkenes and allenes. Org. Lett. 22, 3618–3622 (2020).

    CAS  PubMed  Google Scholar 

  45. Li, X., Großkopf, J., Jandl, C. & Bach, T. Enantioselective, visible light mediated aza Paternò-Büchi reactions of quinoxalinones. Angew. Chem. Int. Ed. 60, 2684–2688 (2021).

    CAS  Google Scholar 

  46. Hölzl-Hobmeier, A. et al. Catalytic deracemization of chiral allenes by sensitized excitation with visible light. Nature 564, 240–243 (2018).

    PubMed  Google Scholar 

  47. Plaza, M., Jandl, C. & Bach, T. Photochemical deracemization of allenes and subsequent chirality transfer. Angew. Chem. Int. Ed. 59, 12785–12788 (2020).

    CAS  Google Scholar 

  48. Plaza, M., Großkopf, J., Breitenlechner, S., Bannwarth, C. & Bach, T. Photochemical deracemization of primary allene amides by triplet energy transfer: a combined synthetic and theoretical study. J. Am. Chem. Soc. 143, 11209–11217 (2021).

    CAS  PubMed  Google Scholar 

  49. Tröster, A., Bauer, A., Jandl, C. & Bach, T. Enantioselective visible-light-mediated formation of 3-cyclopropylquinolones by triplet-sensitized deracemization. Angew. Chem. Int. Ed. 58, 3538–3541 (2019).

    Google Scholar 

  50. Li, X. et al. Photochemically induced ring opening of spirocyclopropyl oxindoles: evidence for a triplet 1,3 diradical intermediate and deracemization by a chiral sensitizer. Angew. Chem. Int. Ed. 59, 21640–21647 (2020).

    CAS  Google Scholar 

  51. Kratz, T. et al. Photochemical deracemization of chiral alkenes via triplet energy transfer. J. Am. Chem. Soc. 144, 10133–10138 (2022).

    CAS  PubMed  Google Scholar 

  52. Nikitas, N. F., Gkizis, P. L. & Kokotos, C. G. Thioxanthone: a powerful photocatalyst for organic reactions. Org. Biomol. Chem. 19, 5237–5253 (2021).

    CAS  PubMed  Google Scholar 

  53. Zhou, T.-P., Zhong, F., Wu, Y. & Liao, R.-Z. Regioselectivity and stereoselectivity of intramolecular [2+2] photocycloaddition catalyzed by chiral thioxanthone: a quantum chemical study. Org. Biomol. Chem. 19, 1532–1540 (2021).

    CAS  PubMed  Google Scholar 

  54. Yang, Y., Wen, Y., Dang, Z. & Yu, H. Mechanistic investigation of visible-light-induced intermolecular [2+2] photocycloaddition catalyzed with chiral thioxanthone. J. Phys. Chem. A 121, 4552–4559 (2017).

    CAS  PubMed  Google Scholar 

  55. Murov, S. L., Carmichael, I. & Hug, G. L. Handbook of Photochemistry 3rd edn, 152, 197 (CRC, 2006).

  56. Ding, W. et al. Bifunctional photocatalysts for enantioselective aerobic oxidation of β‑ketoesters. J. Am. Chem. Soc. 139, 63–66 (2017).

    CAS  PubMed  Google Scholar 

  57. Yin, H. et al. Asymmetric bis(oxazoline)–Ni(II) catalyzed α-hydroxylation of cyclic β-keto esters under visible light. Org. Biomol. Chem. 19, 6588–6592 (2021).

    CAS  PubMed  Google Scholar 

  58. Tang, X.-F. et al. Bifunctional metal-free photo-organocatalysts for enantioselective aerobic oxidation of β-dicarbonyl compounds. Tetrahedron 74, 3624–3633 (2018).

    CAS  Google Scholar 

  59. Tang, X.-F. et al. Visible-light-driven enantioselective aerobic oxidation of β-dicarbonyl compounds catalyzed by cinchona-derived phase transfer catalysts in batch and semi-flow. Adv. Synth. Catal. 361, 5245–5252 (2019).

    CAS  Google Scholar 

  60. Tang, X.-F. et al. Enantioselective photooxygenation of β-dicarbonyl compounds in batch and flow photomicroreactors. Org. Biomol. Chem. 17, 7938–7942 (2019).

    CAS  PubMed  Google Scholar 

  61. Wang, Y. et al. A series of cinchona-derived N‑oxide phase-transfer catalysts: application to the photo-organocatalytic enantioselective α‑hydroxylation of β‑dicarbonyl compounds. J. Org. Chem. 81, 7042–7050 (2016).

    CAS  PubMed  Google Scholar 

  62. Wang, Y. et al. Photo-organocatalytic enantioselective α-hydroxylation of β-keto esters and β-keto amides with oxygen under phase transfer catalysis. Green Chem. 18, 5493–5499 (2016).

    CAS  Google Scholar 

  63. Fischer, J., Mele, L., Serier-Brault, H., Nun, P. & Coeffard, V. Controlling photooxygenation with a bifunctional quinine-BODIPY catalyst: towards asymmetric hydroxylation of β-dicarbonyl compounds. Eur. J. Org. Chem. 2019, 6352–6358 (2019).

    CAS  Google Scholar 

  64. Mayr, F., Mohr, L.-M., Rodriguez, E. & Bach, T. Synthesis of chiral thiourea-thioxanthone hybrids. Synthesis 49, 5238–5250 (2017).

    CAS  PubMed Central  Google Scholar 

  65. Vallavoju, N. et al. Organophotocatalysis: insights into the mechanistic aspects of thiourea-mediated intermolecular [2+2] photocycloadditions. Angew. Chem. Int. Ed. 55, 5446–5451 (2016).

    CAS  Google Scholar 

  66. Vallavoju, N., Selvakumar, S., Jockusch, S., Sibi, M. P. & Sivaguru, J. Enantioselective organo-photocatalysis mediated by atropisomeric thiourea derivatives. Angew. Chem. Int. Ed. 53, 5604–5608 (2014).

    CAS  Google Scholar 

  67. Vallavoju, N. et al. Evaluating thiourea architecture for intramolecular [2+2] photocycloaddition of 4-alkenylcoumarins. Adv. Synth. Catal. 356, 2763–2768 (2014).

    CAS  Google Scholar 

  68. Rigotti, T. et al. A bifunctional photoaminocatalyst for the alkylation of aldehydes: design, analysis, and mechanistic studies. ACS Catal. 8, 5928–5940 (2018).

    CAS  Google Scholar 

  69. Nicewicz, D. A. & MacMillan, D. W. C. Merging photoredox catalysis with organocatalysis: the direct asymmetric alkylation of aldehydes. Science 322, 77–80 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Gualandi, A. et al. Organocatalytic enantioselective alkylation of aldehydes with [Fe(bpy)3]Br2 catalyst and visible light. ACS Catal. 5, 5927–5931 (2015).

    CAS  Google Scholar 

  71. Fidaly, K. et al. Visible light photoredox organocatalysis: a fully transition metal-free direct asymmetric α-alkylation of aldehydes. Green Chem. 14, 1293–1297 (2012).

    CAS  Google Scholar 

  72. Neumann, M., Füldner, S., König, B. & Zeitler, K. Metal-free, cooperative asymmetric organophotoredox catalysis with visible light. Angew. Chem. Int. Ed. 50, 951–954 (2011).

    CAS  Google Scholar 

  73. Pecho, F. et al. A thioxanthone sensitizer with a chiral phosphoric acid binding site: properties and applications in visible light-mediated cycloadditions. Chem. Eur. J. 26, 5190–5194 (2020).

    CAS  PubMed  Google Scholar 

  74. Lyu, J., Claraz, A., Vitale, M. R., Allain, C. & Masson, G. Preparation of chiral photosensitive organocatalysts and their application for the enantioselective synthesis of 1,2-diamines. J. Org. Chem. 85, 12843–12855 (2020).

    CAS  PubMed  Google Scholar 

  75. Lyu, J. et al. Syntheses of new chiral chimeric photoorganocatalysts. RSC Adv. 11, 36663–36669 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Takagi, R. & Tanimoto, T. Enantioselective [2+2] photocycloaddition of quinolone using a C1-symmetric chiral phosphoric acid as a visible-light photocatalyst. Org. Biomol. Chem. 20, 3940–3947 (2022).

    CAS  PubMed  Google Scholar 

  77. Levitre, G. et al. Combining organocatalysis and photoredox catalysis: an asymmetric synthesis of chiral β-amino α-substituted tryptamines. ChemCatChem 11, 5723–5727 (2019).

    CAS  Google Scholar 

  78. Dumoulin, A., Bernadat, G. & Masson, G. Enantioselective three-component amination of enecarbamates enables the synthesis of structurally complex small molecules. J. Org. Chem. 82, 1775–1789 (2017).

    CAS  PubMed  Google Scholar 

  79. Dumoulin, A., Lalli, C., Retailleau, P. & Masson, G. Catalytic, highly enantioselective, direct amination of enecarbamates. Chem. Commun. 51, 5383–5386 (2015).

    CAS  Google Scholar 

  80. Pecho, F. et al. Enantioselective [2+2] Photocycloaddition via iminium ions: catalysis by a sensitizing chiral Brønsted acid. J. Am. Chem. Soc. 143, 9350–9354 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Rolka, A. B., Archipowa, N., Kutta, R. J., Toste, F. D. & König, B. Hybrid catalysts for enantioselective photo-phosphoric acid catalysis. J. Org. Chem. 88, 6509–6522 (2023).

    CAS  PubMed  Google Scholar 

  82. Speckmeier, E., Fischer, T. G. & Zeitler, K. A toolbox approach to construct broadly applicable metal-free catalysts for photoredox chemistry: deliberate tuning of redox potentials and importance of halogens in donor–acceptor cyanoarenes. J. Am. Chem. Soc. 140, 15353–15365 (2018).

    CAS  PubMed  Google Scholar 

  83. Luo, J. & Zhang, J. Donor-acceptor fluorophores for visible-light-promoted organic synthesis: photoredox/Ni dual catalytic C(sp3)-C(sp2) cross-coupling. ACS Catal. 6, 873–877 (2016).

    CAS  Google Scholar 

  84. Sherbrook, E. M. et al. Chiral Brønsted acid-controlled intermolecular asymmetric [2+2] photocycloadditions. Nat. Commun. 12, 5735 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Sherbrook, E. M., Jung, H., Cho, D., Baik, M.-H. & Yoon, T. P. Brønsted acid catalysis of photosensitized cycloadditions. Chem. Sci. 11, 856–861 (2020).

    CAS  Google Scholar 

  86. Liang, D., Chen, J.-R., Tan, L.-P., He, Z.-W. & Xiao, W.-J. Catalytic asymmetric construction of axially and centrally chiral heterobiaryls by Minisci reaction. J. Am. Chem. Soc. 144, 6040–6049 (2022).

    CAS  PubMed  Google Scholar 

  87. Proctor, R. S. J., Davis, H. J. & Phipps, R. J. Catalytic enantioselective Minisci-type addition to heteroarenes. Science 360, 419–422 (2018).

    CAS  PubMed  Google Scholar 

  88. Sauvé, E. R., Mayder, D. M. M., Kamal, S., Oderinde, M. S. & Hudson, Z. M. An imidazoacridine-based TADF material as an effective organic photosensitizer for visible-light-promoted [2+2] cycloaddition. Chem. Sci. 13, 2296–2302 (2022).

    PubMed  PubMed Central  Google Scholar 

  89. Sauvé, E. R., Paeng, J., Yamaguchi, S. & Hudson, Z. M. Donor–acceptor materials exhibiting thermally activated delayed fluorescence using a planarized N-phenylbenzimidazole acceptor. J. Org. Chem. 85, 108–117 (2020).

    PubMed  Google Scholar 

  90. Uoyama, H., Goushi, K., Shizu, K., Nomura, H. & Adachi, C. Highly efficient organic light-emitting diodes from delayed fluorescence. Nature 492, 234–238 (2012).

    CAS  PubMed  Google Scholar 

  91. Bryden, M. A. & Zysman-Colman, E. Organic thermally activated delayed fluorescence (TADF) compounds used in photocatalysis. Chem. Soc. Rev. 50, 7587–7680 (2021).

    CAS  PubMed  Google Scholar 

  92. Shang, T.-Y. et al. Recent advances of 1,2,3,5-tetrakis(carbazol-9-yl)-4,6-dicyanobenzene (4CzIPN) in photocatalytic transformations. Chem. Commun. 55, 5408–5419 (2019).

    CAS  Google Scholar 

  93. Lu, J. et al. Donor-acceptor fluorophores for energy-transfer-mediated photocatalysis. J. Am. Chem. Soc. 140, 13719–13725 (2018).

    CAS  PubMed  Google Scholar 

  94. Srivastava, V., Singh, P. K., Srivastava, A., Sinha, S. & Singh, P. P. Recent advances of dicyanopyrazine (DPZ) in photoredox catalysis. Photochem 1, 237–246 (2021).

    Google Scholar 

  95. Zhao, Y. et al. Dicyanopyrazine-derived push–pull chromophores for highly efficient photoredox catalysis. RSC Adv. 4, 30062–30067 (2014).

    CAS  Google Scholar 

  96. Bureš, F. et al. Structure-property relationships and nonlinear optical effects in donor-substituted dicyanopyrazine-derivedpush–pull chromophores with enlarged and varied π-linkers.Eur. J. Org. Chem. 2012, 529–538 (2012).

    Google Scholar 

  97. Bobo, M. V., Kuchta, J. J. III & Vannucci, A. K. Recent advancements in the development of molecular organic photocatalysts. Org. Biomol. Chem. 19, 4816–4834 (2021).

    CAS  PubMed  Google Scholar 

  98. Parmar, D., Sugiono, E., Raja, S. & Rueping, M. Complete field guide to asymmetric BINOL-phosphate derived Brønsted acid and metal catalysis: history and classification by mode of activation: Brønsted acidity, hydrogen bonding, ion pairing, and metal phosphates. Chem. Rev. 114, 9047–9153 (2014).

    CAS  PubMed  Google Scholar 

  99. Hou, X.-Q. & Du, D.-M. Recent advances in squaramide-catalyzed asymmetric Mannich reactions. Adv. Synth. Catal. 362, 4487–4512 (2020).

    CAS  Google Scholar 

  100. Doyle, A. G. & Jacobsen, E. N. Small-molecule H-bond donors in asymmetric catalysis. Chem. Rev. 107, 5713–5743 (2007).

    CAS  PubMed  Google Scholar 

  101. Wang, J., Lv, X. & Jiang, Z. Visible-light-mediated photocatalytic deracemization. Chem. Eur. J. 29, e20220402 (2023).

    Google Scholar 

  102. Neel, A. J., Hehn, J. P., Tripet, P. F. & Toste, F. D. Asymmetric cross-dehydrogenative coupling enabled by the design and application of chiral triazole-containing phosphoric acids. J. Am. Chem. Soc. 135, 14044–14047 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Liles, J. P. et al. Data science enables the development of a new class of chiral phosphoric acid catalysts. Chem 9, 1518–1537 (2023).

    CAS  PubMed  Google Scholar 

  104. Crawford, J. M., Kingston, C., Toste, F. D. & Sigman, M. S. Data science meets physical organic chemistry. Acc. Chem. Res. 54, 3136–3148 (2021).

    CAS  Google Scholar 

  105. Werth, J. & Sigman, M. S. Connecting and analyzing enantioselective bifunctional hydrogen bond donor catalysis using data science tools. J. Am. Chem. Soc. 142, 16382–16391 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Reid, J. P. & Sigman, M. S. Holistic prediction of enantioselectivity in asymmetric catalysis. Nature 571, 343–348 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Zheng, J. et al. Enantioselective intermolecular excited-state photoreactions using a chiral Ir triplet sensitizer: separating association from energy transfer in asymmetric photocatalysis. J. Am. Chem. Soc. 141, 13625–13634 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

A.B.R. thanks J. S. Tracy (University of West Florida) for helpful discussions and proofreading of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

A.B.R. wrote the manuscript. B.K. contributed to the discussion and helped revise the manuscript before submission.

Corresponding author

Correspondence to Burkhard König.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Synthesis thanks Qing-Wei Meng and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editor: Peter Seavill, in collaboration with the Nature Synthesis team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rolka, A.B., König, B. Bifunctional organic photocatalysts for enantioselective visible-light-mediated photocatalysis. Nat. Synth 2, 913–925 (2023). https://doi.org/10.1038/s44160-023-00398-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44160-023-00398-0

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing