Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Programmable zigzag π-extension toward graphene-like molecules by the stacking of naphthalene blocks

Abstract

Graphene-like molecules with a zigzag periphery are interesting because of their ability to host spin-polarized electronic edge states. Although progress has been made for the preparation of armchair-edged graphene-like molecules, a general synthetic strategy to zigzag type remains elusive. Herein, using acetylenedicarboxylates as the C2 insertion unit, we report a rapid and modular strategy to extend the π-conjugation in a zigzag fashion through a rhodium-catalysed sequential C2–H and C8–H activation-annulation of naphthalene ketones. Different from the reported C–H activation-annulation of aryl ketones with alkynes to form a five-membered indenol, fulvene or six-membered pyran oxonium, this [4 + 2] and [4 + 2] annulation sequence selectively undergoes C(sp3)–H cyclization to extend the naphthalene fragment. This programmable zigzag π-extension can be compared to the stacking of toy blocks, as the naphthalene fragments are added step by step along an alkyl chain, demonstrated by the synthesis of anthanthrene and subsequently peri-naphthacenonaphthacene. These products are easily transformed to electron transport materials and thermally activated delayed fluorescent materials.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The synthesis of armchair and zigzag-edged GLMs.
Fig. 2: Models for the C–H activation–annulation of aryl ketones with alkynes and optimization of the reaction conditions.
Fig. 3: Mechanism studies.
Fig. 4
Fig. 5: Synthetic applications.
Fig. 6: OTFT and TADF performances.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available within the article and its Supplementary Information. The X-ray crystallographic coordinates for structures reported in this article have been deposited at the Cambridge Crystallographic Data Centre (CCDC) under deposition number CCDC 2153377 (26), 2170028 (34), 2153378 (37) and 2153379 (52). These data can be obtained free of charge from the CCDC via www.ccdc.cam.ac.uk/data_request/cif. Source data are provided with this paper.

References

  1. Anthony, J. E. Functionalized acenes and heteroacenes for organic electronics. Chem. Rev. 106, 5028–5048 (2006).

    CAS  PubMed  Google Scholar 

  2. Wu, J., Pisula, W. & Müllen, K. Graphenes as potential material for electronics. Chem. Rev. 107, 718–747 (2007).

    CAS  PubMed  Google Scholar 

  3. Figueira-Duarte, T. M. & Müllen, K. Pyrene-based materials for organic electronics. Chem. Rev. 111, 7260–7314 (2011).

    CAS  PubMed  Google Scholar 

  4. Narita, A., Wang, X.-Y., Feng, X. & Müllen, K. New advances in nanographene chemistry. Chem. Soc. Rev. 44, 6616–6643 (2015).

    CAS  PubMed  Google Scholar 

  5. Segawa, Y., Ito, H. & Itami, K. Structurally uniform and atomically precise carbon nanostructures. Nat. Rev. Mater. 1, 15002 (2016).

    CAS  Google Scholar 

  6. Ito, H., Ozaki, K. & Itami, K. Annulative π-extension (APEX): rapid access to fused arenes, heteroarenes, and nanographenes. Angew. Chem. Int. Ed. 56, 11144–11164 (2017).

    CAS  Google Scholar 

  7. Koga, Y., Kaneda, T., Saito, Y., Murakami, K. & Itami, K. Synthesis of partially and fully fused polyaromatics by annulative chlorophenylene dimerization. Science 359, 435–439 (2018).

    CAS  PubMed  Google Scholar 

  8. Ozaki, K., Kawasumi, K., Shibata, M., Ito, H. & Itami, K. One-shot K-region-selective annulative π-extension for nanographene synthesis and functionalization. Nat. Commun. 6, 6251 (2015).

    CAS  PubMed  Google Scholar 

  9. Matsuoka, W., Ito, H., Sarlah, D. & Itami, K. Diversity-oriented synthesis of nanographenes enabled by dearomative annulative π-extension. Nat. Commun. 12, 3940 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Hein, S. J., Lehnherr, D., Arslan, H., Uribe-Romo, F. J. & Dichtel, W. R. Alkyne benzannulation reactions for the synthesis of novel aromatic architectures. Acc. Chem. Res. 50, 2776–2788 (2017).

    CAS  PubMed  Google Scholar 

  11. Senese, A. D. & Chalifoux, W. A. Nanographene and graphene nanoribbon synthesis via alkyne benzannulations. Molecules 24, 118 (2019).

    Google Scholar 

  12. Chen, Q., Schollmeyer, D., Müllen, K. & Narita, A. Synthesis of circumpyrene by alkyne benzannulation of brominated dibenzo[hi,st]ovalene. J. Am. Chem. Soc. 141, 19994–19999 (2019).

    CAS  PubMed  Google Scholar 

  13. Steiner, A.-K. & Amsharov, K. Y. The rolling-up of oligophenylenes to nanographenes by a HF-zipping approach. Angew. Chem. Int. Ed. 56, 14732–14736 (2017).

    CAS  Google Scholar 

  14. Kolmer, M. et al. Fluorine-programmed nanozipping to tailored nanographenes on rutile TiO2 surfaces. Science 363, 57–60 (2019).

    CAS  PubMed  Google Scholar 

  15. Ruffieux, P. et al. On-surface synthesis of graphene nanoribbons with zigzag edge topology. Nature 531, 489–492 (2016).

    CAS  PubMed  Google Scholar 

  16. Mishra, S. et al. Large magnetic exchange coupling in rhombus-shaped nanographenes with zigzag periphery. Nat. Chem. 13, 581–586 (2021).

    CAS  PubMed  Google Scholar 

  17. Lungerich, D. et al. Dehydrative π-extension to nanographenes with zig-zag edges. Nat. Commun. 9, 4756 (2018).

    PubMed  PubMed Central  Google Scholar 

  18. Gu, Y., Wu, X., Gopalakrishna, T. Y., Phan, H. & Wu, J. Graphene-like molecules with four zigzag edges. Angew. Chem. Int. Ed. 57, 6541–6545 (2018).

    CAS  Google Scholar 

  19. Zeng, W. et al. Superoctazethrene: an open-shell graphene-like molecule possessing large diradical character but still with reasonable stability. J. Am. Chem. Soc. 140, 14054–14058 (2018).

    CAS  PubMed  Google Scholar 

  20. Ajayakumar, M. R. et al. Toward full zigzag-edged nanographenes: peri-tetracene and its corresponding circumanthracene. J. Am. Chem. Soc. 140, 6240–6244 (2018).

    CAS  PubMed  Google Scholar 

  21. Colby, D. A., Bergman, R. G. & Ellman, J. A. Rhodium-catalyzed C–C bond formation via heteroatom-directed C–H bond activation. Chem. Rev. 110, 624–655 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Song, G., Wang, F. & Li, X. C–C, C–O and C–N bond formation via rhodium(III)-catalyzed oxidative C–H activation. Chem. Soc. Rev. 41, 3651–3678 (2012).

    CAS  PubMed  Google Scholar 

  23. Yang, Y. et al. Rhodium-catalyzed annulation of arenes with alkynes through weak chelation-assisted C–H activation. Chem. Commun. 52, 2872–2884 (2016).

    CAS  Google Scholar 

  24. Huang, Z., Lim, H. N., Mo, F., Young, M. C. & Dong, G. Transition metal-catalyzed ketone-directed or mediated C–H functionalization. Chem. Soc. Rev. 44, 7764–7786 (2015).

    CAS  PubMed  Google Scholar 

  25. Patureau, F. W., Besset, T., Kuhl, N. & Glorius, F. Diverse strategies toward indenol and fulvene derivatives: Rh-catalyzed C–H activation of aryl ketones followed by coupling with internal alkynes. J. Am. Chem. Soc. 133, 2154–2156 (2011).

    CAS  PubMed  Google Scholar 

  26. Muralirajan, K., Parthasarathy, K. & Cheng, C.-H. Regioselective synthesis of indenols by rhodium-catalyzed C–H activation and carbocyclization of aryl ketones and alkynes. Angew. Chem. Int. Ed. 50, 4169–4172 (2011).

    CAS  Google Scholar 

  27. Liu, X., Li, G., Song, F. & You, J. Unexpected regioselective carbon–hydrogen bond activation/cyclization of indolyl aldehydes or ketones with alkynes to benzo-fused oxindoles. Nat. Commun. 5, 5030 (2014).

    CAS  PubMed  Google Scholar 

  28. Yin, J. & You, J. Concise synthesis of polysubstituted carbohelicenes by a C–H activation/radical reaction/C–H activation sequence. Angew. Chem. Int. Ed. 58, 302–306 (2019).

    CAS  Google Scholar 

  29. Yin, J. et al. Acyl radical to rhodacycle addition and cyclization relay to access butterfly flavylium fluorophores. Nat. Commun. 10, 5664 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Stuart, D. R., Alsabeh, P., Kuhn, M. & Fagnou, K. Rhodium(III)-catalyzed arene and alkene C–H bond functionalization leading to indoles and pyrroles. J. Am. Chem. Soc. 132, 18326–18339 (2010).

    CAS  PubMed  Google Scholar 

  31. Mochida, S., Shimizu, M., Hirano, K., Satoh, T. & Miura, M. Synthesis of naphtho[1,8-bc]pyran drivatives and related cmpounds through hydroxy group directed C–H bond cleavage under rhodium catalysis. Chem. Asian J. 5, 847–851 (2010).

    CAS  PubMed  Google Scholar 

  32. Tan, X. et al. Rhodium-catalyzed cascade oxidative annulation leading to substituted naphtho[1,8-bc]pyrans by sequential cleavage of C(sp2)–H/C(sp3)–H and C(sp2)–H/O–H bonds. J. Am. Chem. Soc. 134, 16163–16166 (2012).

    CAS  PubMed  Google Scholar 

  33. Yin, J. et al. Synthesis of phenalenyl-fused pyrylium cations: divergent C–H activation/annulation reaction sequence of naphthalene aldehydes with alkynes. Angew. Chem. Int. Ed. 56, 13094–13098 (2017).

    CAS  Google Scholar 

  34. Yin, J. et al. Annulation cascade of arylnitriles with alkynes to stable delocalized PAH carbocations via intramolecular rhodium migration. Chem. Sci. 9, 5488–5493 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Neochoritis, C. G., Zarganes-Tzitzikas, T. & Stephanidou-Stephanatou, J. Dimethyl acetylenedicarboxylate: a versatile tool in organic synthesis. Synthesis 46, 0537–0585 (2014).

    Google Scholar 

  36. Gerfaud, T., Neuville, L. & Zhu, J. Palladium-catalyzed annulation of acyloximes with arynes (or alkynes): synthesis of phenanthridines and isoquinolines. Angew. Chem. Int. Ed. 48, 572–577 (2009).

    CAS  Google Scholar 

  37. Uoyama, H., Goushi, K., Shizu, K., Nomura, H. & Adachi, C. Highly efficient organic light-emitting diodes from delayed fluorescence. Nature 492, 234–238 (2012).

    CAS  PubMed  Google Scholar 

  38. Huang, Z. et al. Molecular design of non-doped OLEDs based on a twisted heptagonal acceptor: A delicate balance between rigidity and rotatability. Angew. Chem. Int. Ed. 59, 9992–9996 (2020).

    CAS  Google Scholar 

  39. Frisch, M. J. et al. Gaussian 09, Revision D.01 (Gaussian, Inc., 2013).

  40. Becke, A. D. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 98, 5648–5652 (1993).

    CAS  Google Scholar 

  41. Lee, C., Yang, W. & Parr, R. G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 37, 785–789 (1988).

    CAS  Google Scholar 

  42. Zhao, Y. & Truhlar, D. G. The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor. Chem. Acc. 120, 215–241 (2008).

    CAS  Google Scholar 

  43. Cossi, M., Barone, V., Cammi, R. & Tomasi, J. Ab initio study of solvated molecules: a new implementation of the polarizable continuum model. Chem. Phys. Lett. 255, 327–335 (1996).

    CAS  Google Scholar 

  44. Hruszkewycz, D. P., Miles, K. C., Thielb, O. R. & Stahl, S. S. Co/NHPI-mediated aerobic oxygenation of benzylic C–H bonds in pharmaceutically relevant molecules. Chem. Sci. 8, 1282 (2017).

    CAS  PubMed  Google Scholar 

  45. Quinn, J. T. E., Zhu, J., Li, X., Wang, J. & Li, Y. Recent progress in the development of n-type organic semiconductors for organic field effect transistors. J. Mater. Chem. C 5, 8654 (2017).

    CAS  Google Scholar 

  46. Minder, N. A., Ono, S., Chen, Z., Facchetti, A. & Morpurgo, A. F. Band-like electron transport in organic transistors and implication of the molecular structure for performance optimization. Adv. Mater. 24, 503–508 (2012).

    CAS  PubMed  Google Scholar 

  47. Wu, Z.-H. et al. 4,5,9,10-Pyrene diimides: a family of aromatic diimides exhibiting high electron mobility and two-photon excited emission. Angew. Chem. Int. Ed. 56, 13031–13035 (2017).

    CAS  Google Scholar 

  48. Tao, Y. et al. Thermally activated delayed fluorescence materials towards the breakthrough of organoelectronics. Adv. Mater. 26, 7931–7958 (2014).

    CAS  PubMed  Google Scholar 

  49. Wong, M. Y. & Zysman-Colman, E. Purely organic thermally activated delayed fluorescence materials for organic light-emitting diodes. Adv. Mater. 29, 1605444 (2017).

    Google Scholar 

Download references

Acknowledgements

We acknowledge support for this work from the National Natural Science Foundation of China (No. 22031007, J.You) and from the Office of China Postdoctoral Council, the International Postdoctoral Exchange Fellowship Program (No. 20190088, J.Yin).

Author information

Authors and Affiliations

Authors

Contributions

J. Yin, J.L., Y.W. and Y.Z. performed the experiments and analysed the data. H.C. performed the DFT calculations. J. You designed and directed the project. Y.L. directed the DFT calculations. C.Z. directed the OTFT measurements. Z.B. directed the OLED measurements. J. Yin, J. You, J.L., H.C., D.P., Y.Y. and Y.L. wrote the manuscript. All authors contributed to discussions.

Corresponding authors

Correspondence to Yu Lan or Jingsong You.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Synthesis thanks Haibo Ge, Andreas Hirsch and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editor: Alison Stoddart, in collaboration with the Nature Synthesis team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Experimental Details, Sections I–XIV, Supplementary Tables 1–10 and Figs. 1–10.

Supplementary Data 1

Cif file for compound 26, CCDC 2153377.

Supplementary Data 2

Structure factors for compound 26, CCDC 2153377.

Supplementary Data 3

Cif file for compound 34, CCDC 2170028.

Supplementary Data 4

Structure factors for compound 34, CCDC 2170028.

Supplementary Data 5

Cif file for compound 37, CCDC 2153378.

Supplementary Data 6

Structure factors for compound 37, CCDC 2153378.

Supplementary Data 7

Cif file for compound 52, CCDC 2153379.

Supplementary Data 8

Structure factors for compound 52, CCDC 2153379.

Source data

Source Data Fig. 6

Source Data for Fig. 6b and 6d.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yin, J., Li, J., Chen, H. et al. Programmable zigzag π-extension toward graphene-like molecules by the stacking of naphthalene blocks. Nat. Synth 2, 838–847 (2023). https://doi.org/10.1038/s44160-023-00306-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44160-023-00306-6

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing