Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Engineered interfaces for heterostructured intermetallic nanomaterials

Abstract

Heterostructured nanomaterials are of interest for many applications due to their unique properties, which depend on the identity of each individual component and the interface between them. However, the difficulty of controlling the synthesis of heterostructures and the interfaces between components limits their applications. Here we develop a colloidal synthetic method to prepare heterostructured intermetallic nanomaterials (iNMs) and engineer the interfaces between the individual components, based on the galvanic replacement mechanism and precisely controlled addition of precursors. Up to four distinct intermetallic phase-segregated segments could be combined in one nanoparticle. Nanometre-precision phase-segregated control along one dimension of iNMs was demonstrated by taking advantage of the layered growth pathway at the intermetallic–metal interfaces, leading to a maximum number of interfaces between different intermetallic phases. By adjusting the number of interfaces in a particle, we demonstrated systematic control of the interface-to-bulk ratio in heterostructured iNMs. This method offers great potential for preparing complex heterostructured nanomaterials with controlled interfaces, enabling the exploration of their properties and applications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Heterostructured iNMs with varying elemental constituents.
Fig. 2: Heterostructured iNM growth mechanism.
Fig. 3: Heterostructured iNMs with structural complexity through layered growth.
Fig. 4: Heterostructured and interface iNMs with extended interface variety.

Similar content being viewed by others

Data availability

All data are available in the main text and the supplementary materials.

References

  1. Steimle, B. C., Fenton, J. L. & Schaak, R. E. Rational construction of a scalable heterostructured nanorod megalibrary. Science 367, 418–424 (2020).

    Article  CAS  PubMed  Google Scholar 

  2. Fenton, J. L., Steimle, B. C. & Schaak, R. E. Tunable intraparticle frameworks for creating complex heterostructured nanoparticle libraries. Science 360, 513–517 (2018).

    Article  CAS  PubMed  Google Scholar 

  3. Chen, P.-C. et al. Polyelemental nanoparticle libraries. Science 352, 1565–1569 (2016).

    Article  CAS  PubMed  Google Scholar 

  4. Sun, X. et al. Dislocation-induced stop-and-go kinetics of interfacial transformations. Nature 607, 708–713 (2022).

    Article  CAS  PubMed  Google Scholar 

  5. Du, K. et al. Interface engineering breaks both stability and activity limits of RuO2 for sustainable water oxidation. Nat. Commun. 13, 5448 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Zhang, H. et al. Atomically engineered interfaces yield extraordinary electrostriction. Nature 609, 695–700 (2022).

    Article  CAS  PubMed  Google Scholar 

  7. Gong, Y. et al. Elemental de-mixing-induced epitaxial kesterite/CdS interface enabling 13%-efficiency kesterite solar cells. Nat. Energy 7, 966–977 (2022).

    Article  CAS  Google Scholar 

  8. Chen, K. et al. Graphene oxide bulk material reinforced by heterophase platelets with multiscale interface crosslinking. Nat. Mater. 21, 1121–1129 (2022).

    Article  PubMed  Google Scholar 

  9. Su, C. et al. Tuning colour centres at a twisted hexagonal boron nitride interface. Nat. Mater. 21, 896–902 (2022).

  10. Zhong, M. et al. Accelerated discovery of CO2 electrocatalysts using active machine learning. Nature 581, 178–183 (2020).

    Article  CAS  PubMed  Google Scholar 

  11. Huang, X. et al. High-performance transition metal-doped Pt3Ni octahedra for oxygen reduction reaction. Science 348, 1230–1234 (2015).

    Article  CAS  PubMed  Google Scholar 

  12. Zhou, M., Li, C. & Fang, J. Noble-metal based random alloy and intermetallic nanocrystals: syntheses and applications. Chem Rev. 121, 736–795 (2021).

  13. Furukawa, S. & Komatsu, T. Intermetallic compounds: promising inorganic materials for well-structured and electronically modified reaction environments for efficient catalysis. ACS Catal. 7, 735–765 (2017).

    Article  CAS  Google Scholar 

  14. Motagamwala, A. H., Almallahi, R., Wortman, J., Igenegbai, V. O. & Linic, S. Stable and selective catalysts for propane dehydrogenation operating at thermodynamic limit. Science 373, 217–222 (2021).

    Article  CAS  PubMed  Google Scholar 

  15. Ryoo, R. et al. Rare-earth–platinum alloy nanoparticles in mesoporous zeolite for catalysis. Nature 585, 221–224 (2020).

    Article  CAS  PubMed  Google Scholar 

  16. Liu, Y. et al. Two-dimensional intermetallic PtBi/Pt core/shell nanoplates overcome tumor hypoxia for enhanced cancer therapy. Nanoscale 13, 14245–14253 (2021).

    Article  CAS  PubMed  Google Scholar 

  17. Yang, C.-L. et al. Sulfur-anchoring synthesis of platinum intermetallic nanoparticle catalysts for fuel cells. Science 374, 459–464 (2021).

    Article  CAS  PubMed  Google Scholar 

  18. Qiu, Y. et al. Construction of Pd–Zn dual sites to enhance the performance for ethanol electro-oxidation reaction. Nat. Commun. 12, 5273 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Maligal-Ganesh, R. V. et al. A ship-in-a-bottle strategy to synthesize encapsulated intermetallic nanoparticle catalysts: exemplified for furfural hydrogenation. ACS Catal. 6, 1754–1763 (2016).

    Article  CAS  Google Scholar 

  20. Chong, L. et al. Ultralow-loading platinum-cobalt fuel cell catalysts derived from imidazolate frameworks. Science 362, 1276–1281 (2018).

    Article  CAS  PubMed  Google Scholar 

  21. Choi, D. S., Robertson, A. W., Warner, J. H., Kim, S. O. & Kim, H. Low-temperature chemical vapor deposition synthesis of Pt–Co alloyed nanoparticles with enhanced oxygen reduction reaction catalysis. Adv. Mater. 28, 7115–7122 (2016).

    Article  CAS  PubMed  Google Scholar 

  22. Cable, R. E. & Schaak, R. E. Reacting the unreactive: a toolbox of low-temperature solution-mediated reactions for the facile interconversion of nanocrystalline intermetallic compounds. J. Am. Chem. Soc. 128, 9588–9589 (2006).

    Article  CAS  PubMed  Google Scholar 

  23. Clarysse, J., Moser, A., Yarema, O., Wood, V. & Yarema, M. Size- and composition-controlled intermetallic nanocrystals via amalgamation seeded growth. Sci. Adv. 7, eabg1934 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Yao, Y. et al. High-entropy nanoparticles: synthesis–structure–property relationships and data-driven discovery. Science 376, eabn3103 (2022).

    Article  CAS  PubMed  Google Scholar 

  25. Chen, A. N. et al. Galvanic replacement of intermetallic nanocrystals as a route toward complex heterostructures. Nanoscale 13, 2618–2625 (2021).

    Article  CAS  PubMed  Google Scholar 

  26. Yu, J. et al. Synthesis of PtSn4 intermetallic nanodisks through a galvanic replacement mechanism. Chem. Mater. 34, 6968–6976 (2022).

    Article  CAS  Google Scholar 

  27. Yu, J. et al. Precisely controlled synthesis of hybrid intermetallic–metal nanoparticles for nitrate electroreduction. ACS Appl. Mater. Interfaces 13, 52073–52081 (2021).

    Article  CAS  Google Scholar 

  28. Sun, Y. & Xia, Y. Shape-controlled synthesis of gold and silver nanoparticles. Science 298, 2176–2179 (2002).

    Article  CAS  PubMed  Google Scholar 

  29. Chee, S. W., Tan, S. F., Baraissov, Z., Bosman, M. & Mirsaidov, U. Direct observation of the nanoscale Kirkendall effect during galvanic replacement reactions. Nat Commun. 8, 1224 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Castilla-Amorós, L., Stoian, D., Pankhurst, J. R., Varandili, S. B. & Buonsanti, R. Exploring the chemical reactivity of gallium liquid metal nanoparticles in galvanic replacement. J. Am. Chem. Soc. 142, 19283–19290 (2020).

    Article  PubMed  Google Scholar 

  31. Xia, X., Wang, Y., Ruditskiy, A. & Xia, Y. 25th anniversary article: galvanic replacement: a simple and versatile route to hollow nanostructures with tunable and well-controlled properties. Adv. Mater. 25, 6313–6333 (2013).

    Article  CAS  PubMed  Google Scholar 

  32. Oh, M. H. et al. Galvanic replacement reactions in metal oxide nanocrystals. Science 340, 964–968 (2013).

    Article  CAS  PubMed  Google Scholar 

  33. Zhu, Y. et al. Inverse iron oxide/metal catalysts from galvanic replacement. Nat. Commun. 11, 3269 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Wu, Y. et al. Dirac node arcs in PtSn4. Nat. Phys. 12, 667–671 (2016).

    Article  CAS  Google Scholar 

  35. Chen, P.-C. et al. Interface and heterostructure design in polyelemental nanoparticles. Science 363, 959–964 (2019).

    Article  CAS  PubMed  Google Scholar 

  36. Kravchyk, K. et al. Monodisperse and inorganically capped Sn and Sn/SnO2 nanocrystals for high-performance Li-ion battery anodes. J. Am. Chem. Soc. 135, 4199–4202 (2013).

    Article  CAS  PubMed  Google Scholar 

  37. He, M., Protesescu, L., Caputo, R., Krumeich, F. & Kovalenko, M. V. A general synthesis strategy for monodisperse metallic and metalloid nanoparticles (In, Ga, Bi, Sb, Zn, Cu, Sn, and their alloys) via in situ formed metal long-chain amides. Chem. Mater. 27, 635–647 (2015).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

J.Y. and W.H. acknowledge support from National Science Foundation grant CHE-2108307 and Iowa State University Trapp Award. J.Y. thanks R. Angelici for valuable discussions and suggestions on the manuscript. We thank K. Kovnir and J. Zaikina for valuable discussions and suggestions on the X-ray diffraction characterization.

Author information

Authors and Affiliations

Authors

Contributions

J.Y., Y.Y. and W.H. designed the conceptualization, methodology and visualization of this project. J.Y. performed all the experiments and drafted the original manuscript under the supervision of W.H. J.Y., Y.Y. and W.H. revised and edited the manuscript.

Corresponding author

Correspondence to Wenyu Huang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Synthesis thanks Ya-Wen Zhang and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editor: Alexandra Groves, in collaboration with the Nature Synthesis team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Single composition NMs prepared from Sn NPs.

(a) transmission electron microscopy (TEM) image of Sn NPs. High-angle annual dark-field-scanning TEM (HAADF-STEM) energy dispersive X-ray spectroscopy (EDS) mapping of (b) PtSn4, (c) PdSn4, (d) RhSn4, (e) AuSn, (f) RuxSny, (g) CoxSny, (h) Ni3Sn4, and (i) Cu6Sn5. Based on high resolution STEM images, RuxSny and CoxSny nanoparticles have Ru3Sn7 and CoSn2 intermetallic phases, respectively. Color of elements: Pt-red, Pd-cyan, Rh-purple, Au-yellow, Ru-green, Co-pink, Ni-jungle green, Cu-indigo, Sn-grey.

Extended Data Fig. 2 Crystal structure analysis of heterostructured iNM.

(a) High-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) images of PtSn4-PdSn4 iNMs, (b) the corresponding fast Fourier transform (FFT) of (a); the single set of diffraction pattern from FFT indicates the small lattice mismatch between PtSn4 and PdSn4; (d) STEM image of PtSn4-AuSn iNMs, (e) showing the FFT of PtSn4-AuSn iNMs; the dual diffraction pattern from FFT indicates the different lattice structure of PtSn4 and AuSn (pink: PtSn4 pattern; yellow: AuSn pattern; brown: overlap); (c) and (f) are schematic illustrations of PtSn4-PdSn4 iNM and PtSn4-AuSn iNM, respectively. Scale bar of (a) and (d): 5 nm.

Supplementary information

Supplementary Information

Supplementary Discussion, Figs. 1–87 and Tables 1–3.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, J., Yin, Y. & Huang, W. Engineered interfaces for heterostructured intermetallic nanomaterials. Nat. Synth 2, 749–756 (2023). https://doi.org/10.1038/s44160-023-00289-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44160-023-00289-4

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing