Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Controlled radical copolymerization of fluoroalkenes by using light-driven redox-relay catalysis

Abstract

Fluoroalkenes are feedstocks in the manufacture of high-performance fluoropolymers with various applications. However, the synthesis of well-defined fluoropolymers typically requires harsh conditions and high-pressure techniques to handle gaseous fluoroalkenes. Here, we report the combination of a redox-relay pathway and thermally activated delayed fluorescence (TADF) catalysis to enable controlled copolymerizations of various fluoroalkenes, under ambient conditions. Using this method, a broad scope of main-chain fluoropolymers is prepared with excellent selectivity at low organocatalyst dosages (loadings down to 5 ppm). In addition, polymers with various sequences (for example, diblock and triblock) and topologies (either brush or branched) are synthesized by integration with different agents and synthetic protocols. Mechanistic studies reveal that the rationally designed organic TADF catalyst displays the unique characteristics of redox-relay-based electron transfer, a long lifetime of delayed fluorescence and fine-tuned electronic properties. This work provides an informative concept for precise polymer synthesis and may inspire advanced applications in fluoropolymer engineering.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Main-chain fluoropolymers synthesized via different methods.
Fig. 2: Optimization of reaction conditions for the HFP-iBVE copolymerization.
Fig. 3: Copolymerization results with different amines and CTAs.
Fig. 4: Investigation of the reaction mechanism and photocatalyst properties.
Fig. 5: Kinetic investigations for the HFP copolymerizations.
Fig. 6: Investigations on the synthetic scope of copolymerizations.
Fig. 7: Synthesis of fluoropolymers of different topologies.

Similar content being viewed by others

Data availability

The authors declare that all data supporting the findings of this study are available within the article and its supplementary information. Details about materials, analytic methods, experimental procedures, mechanistic studies, characterization data and NMR spectra are available in the Supplementary Information.

References

  1. Nesvadba, P. in Encyclopedia of Radicals in Chemistry, Biology and Materials (Wiley, 2012).

  2. Scheirs, J. Modern Fluoropolymers: High Performance Polymers for Diverse Applications (Wiley, 1997).

  3. Ebnesajjad, S. Introduction to Fluoropolymers: Materials, Technology, and Applications (Elsevier, 2013).

  4. Lv, J. & Cheng, Y. Fluoropolymers in biomedical applications: state-of-the-art and future perspectives. Chem. Soc. Rev. 50, 5435–5467 (2021).

    CAS  PubMed  Google Scholar 

  5. Mohammad, S. A., Shingdilwar, S., Banerjee, S. & Améduri, B. Macromolecular engineering approach for the preparation of new architectures from fluorinated olefins and their applications. Prog. Polym. Sci. 106, 101255 (2020).

    CAS  Google Scholar 

  6. Pester, C. W. et al. Engineering surfaces through sequential stop-flow photopatterning. Adv. Mater. 28, 9292–9300 (2016).

    CAS  PubMed  Google Scholar 

  7. Reis, M. et al. Machine-learning-guided discovery of 19F MRI agents enabled by automated copolymer synthesis. J. Am. Chem. Soc. 143, 17677–17689 (2021).

    CAS  PubMed  Google Scholar 

  8. Ma, M. et al. Designing weakly solvating solid main-chain fluoropolymer electrolytes: synergistically enhancing stability toward Li anodes and high-voltage cathodes. ACS Energy Lett. 6, 4255–4264 (2021).

    CAS  Google Scholar 

  9. Moad, G., Rizzardo, E. & Thang, S. H. Living radical polymerization by the RAFT process. Aust. J. Chem. 58, 379–410 (2005).

    CAS  Google Scholar 

  10. Kamigaito, M., Ando, T. & Sawamoto, M. Metal-catalyzed living radical polymerization. Chem. Rev. 101, 3689–3745 (2001).

    CAS  PubMed  Google Scholar 

  11. Matyjaszewski, K. & Tsarevsky, N. V. Macromolecular engineering by atom transfer radical polymerization. J. Am. Chem. Soc. 136, 6513–6533 (2014).

    CAS  PubMed  Google Scholar 

  12. Corrigan, N. et al. Reversible-deactivation radical polymerization (controlled/living radical polymerization): from discovery to materials design and applications. Prog. Polym. Sci. 111, 101311 (2020).

    CAS  Google Scholar 

  13. Boschet, F. & Améduri, B. (Co)polymers of chlorotrifluoroethylene: synthesis, properties, and applications. Chem. Rev. 114, 927–980 (2014).

    CAS  PubMed  Google Scholar 

  14. Hansen, N. M. L., Jankova, K. & Hvilsted, S. Fluoropolymer materials and architectures prepared by controlled radical polymerizations. Eur. Polym. J. 43, 255–293 (2007).

    CAS  Google Scholar 

  15. Lee, Y., Boyer, C. & Kwon, M. S. Visible-light-driven polymerization towards the green synthesis of plastics. Nat. Rev. Mater. 7, 74–75 (2021).

    CAS  Google Scholar 

  16. Shanmugam, S. & Boyer, C. Organic photocatalysts for cleaner polymer synthesis. Science 352, 1053–1054 (2016).

    CAS  PubMed  Google Scholar 

  17. Fors, B. P. & Hawker, C. J. Control of a living radical polymerization of methacrylates by light. Angew. Chem. Int. Ed. 51, 8850–8853 (2012).

    CAS  Google Scholar 

  18. Xu, J., Jung, K., Atme, A., Shanmugam, S. & Boyer, C. A robust and versatile photoinduced living polymerization of conjugated and unconjugated monomers and its oxygen tolerance. J. Am. Chem. Soc. 136, 5508–5519 (2014).

    CAS  PubMed  Google Scholar 

  19. Theriot, J. C. et al. Organocatalyzed atom transfer radical polymerization driven by visible light. Science 352, 1082–1086 (2016).

    CAS  PubMed  Google Scholar 

  20. Pearson, R. M., Lim, C.-H., McCarthy, B. G., Musgrave, C. B. & Miyake, G. M. Organocatalyzed atom transfer radical polymerization using N-aryl phenoxazines as photoredox catalysts. J. Am. Chem. Soc. 138, 11399–11407 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Singh, V. K. et al. Highly efficient organic photocatalysts discovered via a computer-aided-design strategy for visible-light-driven atom transfer radical polymerization. Nat. Catal. 1, 794–804 (2018).

    CAS  Google Scholar 

  22. Kostov, G. et al. First amphiphilic poly(vinylidene fluoride-co-3,3,3-trifluoropropene)-b-oligo(vinyl alcohol) block copolymers as potential nonpersistent fluorosurfactants from radical polymerization controlled by xanthate. Macromolecules 44, 1841–1855 (2011).

    CAS  Google Scholar 

  23. Patil, Y. & Ameduri, B. First RAFT/MADIX radical copolymerization of tert-butyl 2-trifluoromethacrylate with vinylidene fluoride controlled by xanthate. Polym. Chem. 4, 2783–2799 (2013).

    CAS  Google Scholar 

  24. Tezuka, Y. & Oike, H. Topological polymer chemistry. Prog. Polym. Sci. 27, 1069–1122 (2002).

    CAS  Google Scholar 

  25. Cao, M., Liu, Y., Zhang, X., Li, F. & Zhong, M. Expanding the toolbox of controlled/living branching radical polymerization through simulation-informed reaction design. Chem 8, 1460–1475 (2022).

    CAS  Google Scholar 

  26. Corbin, D. A. & Miyake, G. M. Photoinduced organocatalyzed atom transfer radical polymerization (O-ATRP): precision polymer synthesis using organic photoredox catalysis. Chem. Rev. 122, 1830–1874 (2022).

    CAS  PubMed  Google Scholar 

  27. Bryden, M. A. & Zysman-Colman, E. Organic thermally activated delayed fluorescence (TADF) compounds used in photocatalysis. Chem. Soc. Rev. 50, 7587–7680 (2021).

    CAS  PubMed  Google Scholar 

  28. Sharma, P. P. et al. Acid resistant PVDF-co-HFP based copolymer proton exchange membrane for electro-chemical application. J. Membr. Sci. 573, 485–492 (2019).

    CAS  Google Scholar 

  29. Quan, Q., Ma, M., Wang, Z., Gu, Y. & Chen, M. Visible-light-enabled organocatalyzed controlled alternating terpolymerization of perfluorinated vinyl ethers. Angew. Chem. Int. Ed. 60, 20443–20451 (2021).

    CAS  Google Scholar 

  30. Xu, J., Shanmugam, S., Duong, H. T. & Boyer, C. Organo-photocatalysts for photoinduced electron transfer-reversible addition–fragmentation chain transfer (PET-RAFT) polymerization. Polym. Chem. 6, 5615–5624 (2015).

    CAS  Google Scholar 

  31. Liu, X., Zhang, L., Cheng, Z. & Zhu, X. Metal-free photoinduced electron transfer–atom transfer radical polymerization (PET–ATRP) via a visible light organic photocatalyst. Polym. Chem. 7, 689–700 (2016).

    CAS  Google Scholar 

  32. Kutahya, C., Aykac, F. S., Yilmaz, G. & Yagci, Y. LED and visible light-induced metal free ATRP using reducible dyes in the presence of amines. Polym. Chem. 7, 6094–6098 (2016).

    CAS  Google Scholar 

  33. Treat, N. J. et al. Metal-free atom transfer radical polymerization. J. Am. Chem. Soc. 136, 16096–16101 (2014).

    CAS  PubMed  Google Scholar 

  34. Chen, K., Zhou, Y., Han, S., Liu, Y. & Chen, M. Main-chain fluoropolymers with alternating sequence control via light-driven reversible-deactivation copolymerization in batch and flow. Angew. Chem. Int. Ed. 61, e202116135 (2022).

    CAS  Google Scholar 

  35. Chen, M., Zhong, M. & Johnson, J. A. Light-controlled radical polymerization: mechanisms, methods, and applications. Chem. Rev. 116, 10167–10211 (2016).

    CAS  PubMed  Google Scholar 

  36. Lim, C.-H. et al. Intramolecular charge transfer and ion pairing in N,N-diaryl dihydrophenazine photoredox catalysts for efficient organocatalyzed atom transfer radical polymerization. J. Am. Chem. Soc. 139, 348–355 (2017).

    CAS  PubMed  Google Scholar 

  37. Terenziani, F., Painelli, A., Katan, C., Charlot, M. & Blanchard-Desce, M. Charge instability in quadrupolar chromophores: symmetry breaking and solvatochromism. J. Am. Chem. Soc. 128, 15742–15755 (2006).

    CAS  PubMed  Google Scholar 

  38. Speckmeier, E., Fischer, T. G. & Zeitler, K. A toolbox approach to construct broadly applicable metal-free catalysts for photoredox chemistry: deliberate tuning of redox potentials and importance of halogens in donor–acceptor cyanoarenes. J. Am. Chem. Soc. 140, 15353–15365 (2018).

    CAS  PubMed  Google Scholar 

  39. Michaudel, Q. et al. Mechanistic insight into the photocontrolled cationic polymerization of vinyl ethers. J. Am. Chem. Soc. 139, 15530–15538 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Lakowicz, J. Principles of Fluorescence Spectroscopy (Springer, 2006).

  41. Sugihara, S., Yoshida, A., Kono, T.-A., Takayama, T. & Maeda, Y. Controlled radical homopolymerization of representative cationically polymerizable vinyl ethers. J. Am. Chem. Soc. 141, 13954–13961 (2019).

    CAS  PubMed  Google Scholar 

  42. Lee, K., Corrigan, N. & Boyer, C. Rapid high-resolution 3D printing and surface functionalization via type I photoinitiated RAFT polymerization. Angew. Chem. Int. Ed. 60, 8839–8850 (2021).

    CAS  Google Scholar 

  43. Narupai, B. et al. Simultaneous preparation of multiple polymer brushes under ambient conditions using microliter volumes. Angew. Chem. Int. Ed. 57, 13433–13438 (2018).

    CAS  Google Scholar 

  44. Baradie, B. & Shoichet, M. S. Synthesis of fluorocarbon-vinyl acetate copolymers in supercritical carbon dioxide: insight into bulk properties. Macromolecules 35, 3569–3575 (2002).

    CAS  Google Scholar 

  45. Perrier, S. 50th Anniversary perspective: RAFT polymerization-a user guide. Macromolecules 50, 7433–7447 (2017).

    CAS  Google Scholar 

  46. Friesen, C. M. & Améduri, B. Outstanding telechelic perfluoropolyalkylethers and applications therefrom. Prog. Polym. Sci. 81, 238–280 (2018).

    CAS  Google Scholar 

  47. Hawker, C. J., Frechet, J. M. J., Grubbs, R. B. & Dao, J. Preparation of hyperbranched and star polymers by a ‘living’, self-condensing free radical polymerization. J. Am. Chem. Soc. 117, 10763–10764 (1995).

    CAS  Google Scholar 

Download references

Acknowledgements

This research was financially supported by National Natural Science Foundation of China (NSFC, no. 21971044, M.C.), Shanghai Pilot Program for Basic Research—Fudan University 21TQ1400100 (no. 21TQ007, M.C.), Science and Technology Commission of Shanghai Municipality and State Key Laboratory of Molecular Engineering of Polymers.

Author information

Authors and Affiliations

Authors

Contributions

Y. Zhao and M.C. conceived and designed the research. Y. Zhao, Y.C. and K.C. performed synthesis. Y. Zhao, Y.C., H.Z. and Y. Zhou performed characterization. Y. Zhao, Y.C., H.Z., Y. Zhou, K.C., Y.G. and M.C. analysed data. Y. Zhao, Y.G. and M.C. wrote the manuscript and the supplemental information. All authors approved the final version.

Corresponding author

Correspondence to Mao Chen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Synthesis thanks the anonymous reviewers for their contribution to the peer review of this work. Primary Handling Editor: Alison Stoddart, in collaboration with the Nature Synthesis team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Materials and methods, Figs. 1–125 and Tables 1–23.

Source data

Source Data Fig. 2

Statistical source data.

Source Data Fig. 3

Statistical source data.

Source Data Fig. 4

Statistical source data.

Source Data Fig. 5

Statistical source data.

Source Data Fig. 6

Statistical source data.

Source Data Fig. 7

Statistical source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Y., Chen, Y., Zhou, H. et al. Controlled radical copolymerization of fluoroalkenes by using light-driven redox-relay catalysis. Nat. Synth 2, 653–662 (2023). https://doi.org/10.1038/s44160-023-00284-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44160-023-00284-9

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing