Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Enantioselective synthesis of tetraarylmethanes through meta-hydroxyl-directed benzylic substitution

Abstract

Benzylic carbocations bearing an ortho- or para-hydroxyl group can be stabilized by forming quinone methides, which have been explored in enantioselective synthesis. However, those with a meta-hydroxyl group have remained almost unexplored in organic synthesis. The lack of resonance stabilization by a typical quinone methide form renders them not only difficult to generate, but also challenging to control for asymmetric bond formation. Here we report an efficient catalytic enantioselective reaction between meta-hydroxyl triarylmethanols and indoles, via triaryl carbocations, for the synthesis of tetraarylmethanes with excellent enantiocontrol. Control experiments reveal that the meta-hydroxyl group is essential for both reactivity and stereocontrol. Ortho-directing groups (alkoxyl, sulfenyl or fluoro) benefit enantiocontrol through secondary hydrogen-bonding interactions, but are not required for reactivity. The resulting tetraarylmethane products show anticancer activities, through a mechanism distinct from that of classical anticancer drugs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Introduction to QMs and reaction design.
Fig. 2: Gram-scale synthesis and derivatizations.
Fig. 3: Mechanistic experiments and proposed mechanism.
Fig. 4: Anticancer activity of the synthetic compounds and SAR analysis.
Fig. 5: The lead compounds induced necroptosis in LCSCs.

Similar content being viewed by others

Data availability

Source Data are provided with this Article. All data generated and analysed during this study are included in this Article, its Supplementary Information and its Source Data. The X-ray crystallographic coordinates of the structure of 8 (a derivative of 3p) have been deposited at the Cambridge Crystallographic Data Centre under deposition numbers CCDC 2142024 and can be obtained free of charge from the CCDC via https://www.ccdc.cam.ac.uk/structures/.

References

  1. Rokita, S. E. (ed.) Quinone Methides (Wiley, 2009).

  2. Toteva, M. M. & Richard, J. P. The generation and reactions of quinone methides. Adv. Phys. Org. Chem. 45, 39–91 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Van De Water, R. W. & Pettus, T. R. J. T. o-Quinone methides: intermediates underdeveloped and underutilized in organic synthesis. Tetrahedron 58, 5367–5406 (2002).

    Article  Google Scholar 

  4. Li, Q. et al. Ortho-quinone methide finds its application in bioorthogonal ligation. Curr. Org. Chem. 18, 86–92 (2014).

    Article  Google Scholar 

  5. Gnaim, S. & Shabat, D. Quinone-methide species, a gateway to functional molecular systems: from self-immolative dendrimers to long-wavelength fluorescent dyes. Acc. Chem. Res. 47, 2970–2984 (2014).

    Article  CAS  PubMed  Google Scholar 

  6. Pathak, T. P. & Sigman, M. S. Applications of ortho-quinone methide intermediates in catalysis and asymmetric synthesis. J. Org. Chem. 76, 9210–9215 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Wang, Z. & Sun, J. Recent advances in catalytic asymmetric reactions of o-quinone methides. Synthesis 47, 3629–3644 (2015).

    Article  Google Scholar 

  8. Jaworski, A. A. & Scheidt, K. A. Emerging roles of in situ generated quinone methides in metal-free catalysis. J. Org. Chem. 81, 10145–10153 (2016).

    Article  CAS  PubMed  Google Scholar 

  9. Dorsch, C. & Schneider, C. Asymmetric Brønsted acid catalyzed cycloadditions of ortho-quinone methides and related compounds. Synthesis 54, 3125–3141 (2022).

    Article  CAS  Google Scholar 

  10. Li, X., Li, Z. & Sun, J. Quinone methides and indole imine methides as intermediates in enantioselective catalysis. Nat. Synth. 1, 426–438 (2022).

    Article  Google Scholar 

  11. Li, W., Xu, X., Zhang, P. & Li, P. Recent advances in the catalytic enantioselective reactions of para-quinone methides. Chem. Asian J. 13, 2350–2359 (2018).

    Article  CAS  PubMed  Google Scholar 

  12. El-Sepelgy, O., Haseloff, S., Alamsetti, S. K. & Schneider, C. Brønsted acid catalyzed, conjugate addition of β-dicarbonyls to in situ generated ortho-quinone methides—enantioselective synthesis of 4-aryl-4H-chromenes. Angew. Chem. Int. Ed. Engl. 53, 7923–7927 (2014).

    Article  CAS  PubMed  Google Scholar 

  13. Hsiao, C.-C., Liao, H.-H. & Rueping, M. Enantio- and diastereoselective access to distant stereocenters embedded within tetrahydroxanthenes: utilizing ortho-quinone methides as reactive intermediates in asymmetric Bronsted acid catalysis. Angew. Chem. Int. Ed. Engl. 53, 13258–13263 (2014).

    Article  CAS  PubMed  Google Scholar 

  14. Zhao, W., Wang, Z., Chu, B. & Sun, J. Enantioselective formation of all-carbon quaternary stereocenters from indoles and tertiary alcohols bearing a directing group. Angew. Chem. Int. Ed. Engl. 54, 1910–1913 (2015).

    Article  CAS  PubMed  Google Scholar 

  15. Tsui, G. C., Liu, L. & List, B. The organocatalytic asymmetric Prins cyclization. Angew. Chem. Int. Ed. Engl. 54, 7703–7706 (2015).

    Article  CAS  PubMed  Google Scholar 

  16. Wang, Z. et al. Organocatalytic asymmetric synthesis of 1,1-diarylethanes by transfer hydrogenation. J. Am. Chem. Soc. 137, 383–389 (2015).

    Article  CAS  PubMed  Google Scholar 

  17. Zhao, J.-J., Sun, S.-B., He, S.-H., Wu, Q. & Shi, F. Catalytic asymmetric inverse-electron-demand oxa-Diels–Alder reaction of in situ generated ortho-quinone methides with 3-methyl-2-vinylindoles. Angew. Chem. Int. Ed. Engl. 54, 5460–5464 (2015).

    Article  CAS  PubMed  Google Scholar 

  18. Lin, J.-S. et al. Cu/chiral phosphoric acid-catalyzed asymmetric three-component radical-initiated 1,2-dicarbofunctionalization of alkenes. J. Am. Chem. Soc. 141, 1074–1083 (2019).

    Article  CAS  PubMed  Google Scholar 

  19. Wang, Z., Wong, Y. F. & Sun, J. Catalytic asymmetric 1,6-conjugate addition of para-quinone methides: formation of all-carbon quaternary stereocenters. Angew. Chem. Int. Ed. Engl. 54, 13711–13714 (2015).

    Article  CAS  PubMed  Google Scholar 

  20. Qian, D., Wu, L., Lin, Z. & Sun, J. Organocatalytic synthesis of chiral tetrasubstituted allenes from racemic propargylic alcohols. Nat. Commun. 8, 567 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Ma, D., Miao, C.-B. & Sun, J. Catalytic enantioselective House–Meinwald rearrangement: efficient construction of all-carbon quaternary stereocenters. J. Am. Chem. Soc. 141, 13783–13787 (2019).

    Article  CAS  PubMed  Google Scholar 

  22. Wu, H., Wang, Q. & Zhu, J. Catalytic enantioselective pinacol and Meinwald rearrangements for the construction of quaternary stereocenters. J. Am. Chem. Soc. 141, 11372–11377 (2019).

    Article  CAS  PubMed  Google Scholar 

  23. Wang, Z., Zhu, Y., Pan, X., Wang, G. & Liu, L. Synthesis of chiral triarylmethanes bearing all-carbon quaternary stereocenters: catalytic asymmetric oxidative cross-coupling of 2,2-diarylacetonitriles and (hetero)arenes. Angew. Chem. Int. Ed. Engl. 59, 3053–3057 (2020).

    Article  CAS  PubMed  Google Scholar 

  24. Saha, S., Alamsetti, S. K. & Schneider, C. Chiral Brønsted acid-catalyzed Friedel–Crafts alkylation of electron-rich arenes with in situ-generated ortho-quinone methides: highly enantioselective synthesis of diarylindolylmethanes and triarylmethanes. Chem. Commun. 51, 1461–1464 (2015).

    Article  CAS  Google Scholar 

  25. Sun, M. et al. Catalytic asymmetric (4+3) cyclizations of in situ generated ortho-quinone methides with 2-indolylmethanols. Angew. Chem. Int. Ed. Engl. 58, 8703–8708 (2019).

    Article  CAS  PubMed  Google Scholar 

  26. Jiang, F. et al. A strategy for synthesizing axially chiral naphthyl-indoles: catalytic asymmetric addition reactions of racemic substrates. Angew. Chem. Int. Ed. Engl. 58, 15104–15110 (2019).

    Article  CAS  PubMed  Google Scholar 

  27. Tsuji, N. et al. Activation of olefins via asymmetric Brønsted acid catalysis. Science 359, 1501–1505 (2018).

    Article  CAS  PubMed  Google Scholar 

  28. Mahlau, M. & List, B. Asymmetric counteranion-directed catalysis: concept, definition, and applications. Angew. Chem. Int. Ed. Engl. 52, 518–533 (2013).

    Article  CAS  PubMed  Google Scholar 

  29. Brak, K. & Jacobsen, E. N. Asymmetric ion-pairing catalysis. Angew. Chem. Int. Ed. Engl. 52, 534–561 (2013).

    Article  CAS  PubMed  Google Scholar 

  30. Wendlandt, A. E., Vangal, P. & Jacobsen, E. N. Quaternary stereocentres via an enantioconvergent catalytic SN1 reaction. Nature 556, 447–451 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Properzi, R. et al. Catalytic enantiocontrol over a non-classical carbocation. Nat. Chem. 12, 1174–1179 (2020).

    Article  CAS  PubMed  Google Scholar 

  32. Akiyama, T., Itoh, J., Yokota, K. & Fuchibe, K. Enantioselective Mannich-type reaction catalyzed by a chiral Brønsted acid. Angew. Chem. Int. Ed. Engl. 43, 1566–1568 (2004).

    Article  CAS  PubMed  Google Scholar 

  33. Uraguchi, D. & Terada, M. Chiral Brønsted acid-catalyzed direct Mannich reactions via electrophilic activation. J. Am. Chem. Soc. 126, 5356–5357 (2004).

    Article  CAS  PubMed  Google Scholar 

  34. Parmar, D., Sugiono, E., Raja, S. & Rueping, M. Complete field guide to asymmetric binol-phosphate derived Brønsted acid and metal catalysis: history and classification by mode of activation, Brønsted acidity, hydrogen bonding, ion pairing, and metal phosphates. Chem. Rev. 114, 9047–9153 (2014).

    Article  CAS  PubMed  Google Scholar 

  35. Akiyama, T. & Mori, K. Stronger Brønsted acids: recent progress. Chem. Rev. 115, 9277–9306 (2015).

    Article  CAS  PubMed  Google Scholar 

  36. James, T., van Gemmeren, M. & List, B. Development and applications of disulfonimides in enantioselective organocatalysis. Chem. Rev. 115, 9388–9409 (2015).

    Article  CAS  PubMed  Google Scholar 

  37. Kikuchi, J. & Terada, M. Enantioconvergent substitution reactions of racemic electrophiles by organocatalysis. Chem. Eur. J. 27, 10215–10225 (2021).

    Article  CAS  PubMed  Google Scholar 

  38. Li, X. et al. Catalytic enantioselective synthesis of chiral tetraarylmethanes. Nat. Catal. 3, 1010–1019 (2020).

    Article  CAS  Google Scholar 

  39. Li, Z. et al. Organocatalytic asymmetric formal oxidative coupling for the construction of all-aryl quaternary stereocenters. Chem. Sci. 12, 11793–11798 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kochanowska-Karamyan, A. J. & Hamann, M. T. Marine indole alkaloids: potential new drug leads for the control of depression and anxiety. Chem. Rev. 110, 4489–4497 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Chadha, N. & Silakari, O. Indoles as therapeutics of interest in medicinal chemistry: bird’s eye view. Eur. J. Med. Chem. 134, 159–184 (2017).

    Article  CAS  PubMed  Google Scholar 

  42. Kashyap, M. et al. Indenoindolone derivatives as topoisomerase II-inhibiting anticancer agents. Bioorg. Med. Chem. Lett. 23, 934–938 (2013).

    Article  CAS  PubMed  Google Scholar 

  43. Nagaoka, M., Numazawa, S., Yokoyama, N., Kim, S. I. & Kusano, S. Indenoindole derivative and organic electroluminescent element. US patent 9985216B2 (2018).

  44. Batlle, E. & Clevers, H. Cancer stem cells revisited. Nat. Med. 23, 1124–1134 (2017).

    Article  CAS  PubMed  Google Scholar 

  45. Berghe, T. V. et al. Necroptosis, necrosis and secondary necrosis converge on similar cellular disintegration features. Cell Death Differ. 17, 922–930 (2010).

    Article  Google Scholar 

  46. Su, Z., Yang, Z., Xie, L., DeWitt, J. & Chen, Y. Cancer therapy in the necroptosis era. Cell Death Differ. 23, 748–756 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Linkermann, A. & Green, D. R. Necroptosis. N. Engl. J. Med. 370, 455–465 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Suntharalingam, K. et al. Necroptosis-inducing rhenium(V) oxo complexes. J. Am. Chem. Soc. 137, 2967–2974 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Financial support was provided by the National Natural Science Foundation of China (91956114, 22077108 and 21877092), the Science Technology and Innovation Committee of Shenzhen Municipality (JCYJ20200109141408054 and JCYJ20210324120004011), the Hong Kong Research Grants Council (16303420, 16309321, 11307419, 11303320 and 11302221) and the Innovation and Technology Commission (ITC-CNERC14SC01). We thank H. H. Y. Sung for help in structure elucidation by X-ray crystallography.

Author information

Authors and Affiliations

Authors

Contributions

X.T. and Q.W. performed the chemical syntheses and wrote the paper. Z.D. and S.C. performed the experiments for the biological study and wrote the paper. G.Z. directed the biological study and wrote the paper. J.S. conceived and directed the project and wrote the paper. All the authors discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to Guangyu Zhu or Jianwei Sun.

Ethics declarations

Competing interests

X.T. and J.S. are owners of a Chinese patent application (202210842981.9). The other authors declare no competing interests.

Peer review

Peer review information

Nature Synthesis thanks Luca Bernardi, Robert Musiol and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editor: Thomas West, in collaboration with the Nature Synthesis team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Experimental procedures, characterization data and mechanistic studies, Supplementary Figs. 1–4, Tables 1–5, NMR spectra and HPLC traces.

Reporting Summary

Supplementary Data 1

Crystallographic data for 8; CCDC 2142024.

Source data

Source Data Fig. 4

Statistical source data.

Source Data Fig. 5

Statistical source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tan, X., Deng, Z., Wang, Q. et al. Enantioselective synthesis of tetraarylmethanes through meta-hydroxyl-directed benzylic substitution. Nat. Synth 2, 275–285 (2023). https://doi.org/10.1038/s44160-022-00211-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44160-022-00211-4

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing