Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Mechanical cleavage of non-van der Waals structures towards two-dimensional crystals

Abstract

Mechanical cleavage of layered structures is the most effective method to obtain pristine two-dimensional (2D) sheet materials. However, this approach is restricted to materials in which interlayer interactions are dominated by weak van der Waals (vdW) forces. Here, we report a generic approach to mechanically exfoliate non-vdW structures to obtain a wide variety of 2D materials, including metals (Bi, Sb), semiconductors (SnO, V2O5, Bi2O2Se) and superconducting compounds (KV3Sb5). Our approach involves laterally sliding closely packed neighbouring layers to transform the structure from a stable to a metastable phase, weakening interlayer binding. Mechanical exfoliation of the metastable structures using the Scotch tape method yielded stable mono and few layers of the materials with exciting physical properties. For example, the bandgap for metals and semiconductors was modulated across a wide range depending on the number of layers (0 to 2.01 eV for Sb, 0.60 eV (infrared) to 3.65 eV (ultraviolet) for SnO). We also obtained few-layer KV3Sb5, which is a promising material for studying unconventional superconductivity. Our method for mechanically exfoliating non-vdW layered materials increases the availability of 2D materials for exploration of their physical characteristics and potential applications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic illustration of the mechanical exfoliation process and examples of exfoliated materials.
Fig. 2: Theoretical stability predictions for exfoliated single-layer SnO.
Fig. 3: Characterization of the crystal structure before and after sliding.
Fig. 4: Characterization of mechanically exfoliated sheets of different thicknesses.
Fig. 5: Physical properties of exfoliated monolayer sheets compared with their bulk counterparts.

Similar content being viewed by others

Data availability

All data that support the findings of this study are available in the main article and Supplementary Information. Source data are provided with this paper.

References

  1. Novoselov, K. S. et al. Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004).

    Article  CAS  Google Scholar 

  2. Tan, C. et al. Recent advances in ultrathin two-dimensional nanomaterials. Chem. Rev. 117, 6225–6331 (2017).

    Article  CAS  Google Scholar 

  3. Butler, S. Z. et al. Progress, challenges, and opportunities in two dimensional materials beyond graphene. ACS Nano 7, 2898–2926 (2013).

    Article  CAS  Google Scholar 

  4. Zhou, J. et al. A library of atomically thin metal chalcogenides. Nature 556, 355–361 (2018).

    Article  CAS  Google Scholar 

  5. Stankovich, S. et al. Nature 442, 282–286 (2006).

    Article  CAS  Google Scholar 

  6. Duan, X., Wang, C., Pan, A., Yu, R. & Duan, X. Two-dimensional transition metal dichalcogenides as atomically thin semiconductors: opportunities and challenges. Chem. Soc. Rev. 44, 8859–8876 (2015).

    Article  CAS  Google Scholar 

  7. Huang, Y. et al. Universal mechanical exfoliation of large-area 2D crystals. Nat. Commun. 11, 2453 (2020).

    Article  CAS  Google Scholar 

  8. Deng, Y. et al. Gate-tunable room-temperature ferromagnetism in two-dimensional Fe3GeTe2. Nature 563, 94–99 (2018).

    Article  CAS  Google Scholar 

  9. Liu, F. et al. Disassembling 2D van der Waals crystals into macroscopic monolayers and reassembling into artificial lattices. Science 367, 903–906 (2020).

    Article  CAS  Google Scholar 

  10. Novoselov, K. S. et al. Two-dimensional atomic crystals. Proc. Natl Acad. Sci. USA 102, 10451–10453 (2005).

    Article  CAS  Google Scholar 

  11. Mak, K. F., Lee, C., Hone, J., Shan, J. & Heinz, T. F. Atomically thin MoS2: a new direct-gap semiconductor. Phys. Rev. Lett. 105, 136805 (2010).

    Article  Google Scholar 

  12. Abhervé, A., Mañas-Valero, S., Clemente-León, M. & Coronado, E. Graphene related magnetic materials: micromechanical exfoliation of 2D layered magnets based on bimetallic anilate complexes with inserted [FeIII(acac2-trien)]+ and [FeIII(sal2-trien)]+ molecules. Chem. Sci. 6, 4665–4673 (2015).

    Article  Google Scholar 

  13. Liu, H. et al. Phosphorene: an unexplored 2D semiconductor with a high hole mobility. ACS Nano 8, 4033–4041 (2014).

    Article  CAS  Google Scholar 

  14. Li, L. et al. Black phosphorus field-effect transistors. Nat. Nanotechnol. 9, 372–377 (2014).

    Article  CAS  Google Scholar 

  15. Nicolosi, V., Chhowalla, M., Kanatzidis, M. G., Strano, M. S. & Coleman, J. N. Liquid exfoliation of layered materials. Science 340, 1226419 (2013).

    Article  Google Scholar 

  16. Zhang, X. & Xie, Y. Recent advances in free-standing two-dimensional crystals with atomic thickness: design, assembly and transfer strategies. Chem. Soc. Rev. 42, 8187–8199 (2013).

    Article  CAS  Google Scholar 

  17. Miessler, G. L., Fischer, P. J. & Tarr, D. A. Inorganic Chemistry 2nd edn (Prentice Hall, 1999).

  18. Zhou, W. & Umezawa, N. Band gap engineering of bulk and nanosheet SnO: an insight into the interlayer Sn–Sn lone pair interactions. Phys. Chem. Chem. Phys. 17, 17816 (2015).

    Article  CAS  Google Scholar 

  19. Qu, C. et al. Origin of friction in superlubric graphite contacts. Phys. Rev. Lett. 125, 126102 (2020).

    Article  CAS  Google Scholar 

  20. Song, Y. et al. Robust microscale superlubricity in graphite/hexagonal boron nitride layered heterojunctions. Nat. Mater. 17, 894–899 (2018).

    Article  CAS  Google Scholar 

  21. Saji, K. J., Tian, K., Snure, M. & Tiwari, A. 2D tin monoxide—an unexplored p-type van der Waals semiconductor: material characteristics and field effect transistors. Adv. Electron. Mater. 2, 1500453 (2016).

    Article  Google Scholar 

  22. Zhang, F., Zhu, J., Zhang, D., Schwingenschlögl, U. & Alshareef, H. N. Two-dimensional SnO anodes with a tunable number of atomic layers for sodium ion batteries. Nano Lett. 17, 1302–1311 (2017).

    Article  CAS  Google Scholar 

  23. Li, B. et al. Van der Waals epitaxial growth of air-stable CrSe2 nanosheets with thickness-tunable magnetic order. Nat. Mater. 20, 818–825 (2021).

    Article  CAS  Google Scholar 

  24. Lee, C. et al. Anomalous lattice vibrations of single and few-layer MoS2. ACS Nano 4, 2695–2700 (2010).

    Article  CAS  Google Scholar 

  25. Ross, J. S. et al. Electrical control of neutral and charged excitons in a monolayer semiconductor. Nat. Commun. 4, 1474 (2013).

    Article  Google Scholar 

  26. Xi, X. et al. Ising pairing in superconducting NbSe2 atomic layers. Nat. Phys. 12, 139–143 (2016).

    Article  CAS  Google Scholar 

  27. Zhou, X. et al. Ultrathin 2D GeSe2 rhombic flakes with high anisotropy realized by van der Waals epitaxy. Adv. Funct. Mater. 27, 1703858 (2017).

    Article  Google Scholar 

  28. Daeneke, T. et al. Wafer-scale synthesis of semiconducting SnO monolayers from interfacial oxide layers of metallic liquid tin. ACS Nano 11, 10974–10983 (2017).

    Article  CAS  Google Scholar 

  29. Deng, B. et al. Efficient electrical control of thin-film black phosphorus bandgap. Nat. Commun. 8, 14474 (2017).

    Article  CAS  Google Scholar 

  30. Cakir, D., Sahin, H. & Peeters, F. M. Tuning of the electronic and optical properties of single-layer black phosphorus by strain. Phys. Rev. B 90, 205421 (2014).

    Article  Google Scholar 

  31. Liu, B. et al. Black arsenic-phosphorus: layered anisotropic infrared semiconductors with highly tunable compositions and properties. Adv. Mater. 27, 4423–4429 (2015).

    Article  CAS  Google Scholar 

  32. Li, H. et al. Growth of alloy MoS2xSe2(1−x) nanosheets with fully tunable chemical compositions and optical properties. J. Am. Chem. Soc. 136, 3756–3759 (2014).

    Article  CAS  Google Scholar 

  33. Shi, H., Pan, H., Zhang, Y. & Yakobson, B. I. Quasiparticle band structures and optical properties of strained monolayer MoS2 and WS2. Phys. Rev. B 87, 155304 (2013).

    Article  Google Scholar 

  34. Li, H. et al. Activating and optimizing MoS2 basal planes for hydrogen evolution through the formation of strained sulphur vacancies. Nat. Mater. 15, 48–53 (2016).

    Article  CAS  Google Scholar 

  35. Chaves, A. et al. Bandgap engineering of two-dimensional semiconductor materials. npj 2D Mater. Appl. 4, 29 (2020).

    Article  CAS  Google Scholar 

  36. Aktürk, O. U., Özcelik, V. O. & Ciraci, S. Single-layer crystalline phases of antimony: antimonenes. Phys. Rev. B 91, 235446 (2015).

    Article  Google Scholar 

  37. Ortiz, B. R. et al. New kagome prototype materials: discovery of KV3Sb5, RbV3Sb5, and CsV3Sb5. Phys. Rev. Mater. 3, 094407 (2019).

    Article  CAS  Google Scholar 

  38. Neupert, T., Denner, M. M., Yin, J.-X., Thomale, R. & Hasan, M. Z. Charge order and superconductivity in kagome materials. Nat. Phys. 18, 137–143 (2022).

    Article  CAS  Google Scholar 

  39. Niu, L. et al. Charge-density-wave-driven electronic nematicity in a kagome superconductor. Nature 604, 59–64 (2022).

    Article  Google Scholar 

  40. Chen, H. et al. Roton pair density wave in a strong-coupling kagome superconductor. Nature 599, 222–228 (2021).

    Article  CAS  Google Scholar 

  41. Song, B. Q. et al. Competing superconductivity and charge-density wave in kagome metal CsV3Sb5: evidence from their evolutions with sample thickness. Preprint at https://doi.org/10.48550/arxiv.2105.09248 (2021).

  42. Song, Y. et al. Competition of superconductivity and charge density wave in selective oxidized CsV3Sb5 thin flakes. Phys. Rev. Lett. 127, 237001 (2021).

    Article  CAS  Google Scholar 

  43. Oritiz, B. R. & Sarte, P. M. Superconductivity in the Z2 kagome metal KV3Sb5. Phys. Rev. Mater. 5, 034801 (2021).

    Article  Google Scholar 

  44. Yang, S. et al. Giant, unconventional anomalous hall effect in the metallic frustrated magnet candidate, KV3Sb5. Sci. Adv. 6, eabb6003 (2020).

    Article  CAS  Google Scholar 

  45. Jiang, Y. et al. Unconventional chiral charge order in kagome superconductor KV3Sb5. Nat. Mater. 20, 1353–1357 (2021).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge financial support from the National Natural Science Foundation of China (grant no. 52173288). We thank H. Liu and Y. Shi at the Institute of Physics, Chinese Academy of Sciences for providing KV3Sb5 bulk crystals, Z. Zhang at the University of Science and Technology Beijing and Y. Qin at Xi’an Jiaotong University for constructive discussions. The funders had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

F.G. conceived and supervised the research. K.J., J.J. and L.D. performed experiments. W.G. and J.L. undertook theoretical calculations. P.L. assisted with experiments. B.L. collected experimental data of critical stress for sliding. All authors analysed data and F.G. organized the paper with input from all co-authors.

Corresponding author

Correspondence to Fengxia Geng.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Synthesis thanks the anonymous reviewers for their contribution to the peer review of this work. Primary Handling Editor: Peter Seavill, in collaboration with the Nature Synthesis team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Experimental details and Supplementary Figs. 1–28.

Source data

Source Data Fig. 1

Statistical source data.

Source Data Fig. 2

Statistical source data.

Source Data Fig. 3

Statistical source data.

Source Data Fig. 4

Statistical source data.

Source Data Fig. 5

Statistical source data.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, K., Ji, J., Gong, W. et al. Mechanical cleavage of non-van der Waals structures towards two-dimensional crystals. Nat. Synth 2, 58–66 (2023). https://doi.org/10.1038/s44160-022-00182-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44160-022-00182-6

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing