Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Transition metal-catalysed directed C–H functionalization with nucleophiles

Abstract

The quest for sustainable ways to introduce diverse functional groups onto complex scaffolds has made directed transition metal-catalysed C–H functionalization reactions a main thrust within synthetic organic chemistry. These methodologies offer appealing opportunities to construct carbon–carbon and carbon–heteroatom bonds by using a wide array of coupling partners. Strikingly, organometallic and X-based (X = N, O and S) nucleophiles, which are key reagents in cross-coupling reactions, remain underexploited in these transformations. However, as a result of fine-tuning the reaction conditions and a better understanding of the underlying mechanisms, these reagents were recently incorporated into the synthetic toolkit of C–H functionalizations. This Review outlines a selection of recent advances in nucleophilic C–C and C–heteroatom bond-forming reactions via directed C–H activation. We focus on catalytic approaches that involve organometallic nucleophiles and X-based (X = N, O and S) coupling partners and describe how the field has evolved towards innovative strategies that enhance the applicability and versatility of these transformations. In addition, we highlight synthetic challenges that remain unsolved and that could open exciting venues within this area.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Evolution of site-selective TM catalysis: from cross-coupling to nucleophilic directed C–H functionalization.
Fig. 2: Pd-catalysed C–H functionalization with boronic acid derivatives.
Fig. 3: Pd-catalysed enantioselective C–H functionalization reactions with alkyl and arylboron reagents using chiral ligands.
Fig. 4: Alternative approaches for TM-catalysed C–H activation and/or C–C couplings.
Fig. 5: Intramolecular oxidative CDC.
Fig. 6: Intermolecular C–H activation and C–N bond-forming reactions.
Fig. 7: TM-catalysed nucleophilic C–H activation and C–O and C–S bond-forming reactions.

Similar content being viewed by others

References

  1. Hartwig, J. F. Carbon–heteroatom bond formation catalysed by organometallic complexes. Nature 455, 314–322 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Hartwig, J. F. Organotransition Metal Chemistry: From Bonding to Catalysis (University Science Books, 2010)

  3. Biffis, A., Centomo, P., Del Zotto, A. & Zecca, M. Pd metal catalysts for cross-couplings and related reactions in the 21st century: a critical review. Chem. Rev. 118, 2249–2295 (2018).

    Article  CAS  PubMed  Google Scholar 

  4. Boström, J., Brown, D. G., Young, R. J. & Keserü, G. M. Expanding the medicinal chemistry synthetic toolbox. Nat. Rev. Drug Discov. 17, 709–727 (2018).

    Article  PubMed  Google Scholar 

  5. Chen, Z. et al. Transition metal-catalyzed C–H bond functionalizations by the use of diverse directing groups. Org. Chem. Front. 2, 1107–1295 (2015).

    Article  CAS  Google Scholar 

  6. Sambiagio, C. et al. A comprehensive overview of directing groups applied in metal-catalysed C–H functionalisation chemistry. Chem. Soc. Rev. 47, 6603–6743 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Murahashi, S. Synthesis of phthalimidines from Schiff bases and carbon monoxide. J. Am. Chem. Soc. 77, 6403–6404 (1955).

    Article  CAS  Google Scholar 

  8. Murai, S. et al. Efficient catalytic addition of aromatic carbon–hydrogen bonds to olefins. Nature 366, 529–531 (1993).

    Article  CAS  Google Scholar 

  9. Guillemard, L., Kaplaneris, N., Ackermann, L. & Johansson, M. J. Late-stage C–H functionalization offers new opportunities in drug discovery. Nat. Rev. Chem. 5, 522–545 (2021).

    Article  CAS  Google Scholar 

  10. Rogge, T. et al. C–H activation. Nat. Rev. Methods Primers 1, 43 (2021).

    Article  CAS  Google Scholar 

  11. Oi, S., Fukita, S. & Inoue, Y. Rhodium-catalysed direct ortho arylation of 2-arylpyridines with arylstannanes via C–H activation. Chem. Commun. 1998, 2439–2440 (1998).

    Article  Google Scholar 

  12. Dick, A. R., Hull, K. L. & Sanford, M. S. A highly selective catalytic method for the oxidative functionalization of C−H bonds. J. Am. Chem. Soc. 126, 2300–2301 (2004).

    Article  CAS  PubMed  Google Scholar 

  13. Tsang, W. P., Zheng, N. & Buchwald, S. L. Combined C−H functionalization/C−N bond formation route to carbazoles. J. Am. Chem. Soc. 127, 14560–14561 (2005).

    Article  CAS  PubMed  Google Scholar 

  14. Chen, X., Goodhue, C. E. & Yu, J.-Q. Palladium-catalyzed alkylation of sp2 and sp3 C–H bonds with methylboroxine and alkylboronic acids: two distinct C–H activation pathways. J. Am. Chem. Soc. 128, 12634–12635 (2006).

    Article  CAS  PubMed  Google Scholar 

  15. Chen, X., Li, J.-J., Hao, X.-S., Goodhue, C. E. & Yu, J.-Q. Palladium-catalyzed alkylation of aryl C–H bonds with organotin reagents using benzoquinone as a crucial promoter. J. Am. Chem. Soc. 128, 78–79 (2006).

    Article  CAS  PubMed  Google Scholar 

  16. Shi, Z. et al. Suzuki–Miyaura coupling reaction by PdII‐catalyzed aromatic C−H bond activation directed by an N‐alkyl acetamino group. Angew. Chem. Int. Ed. 46, 5554–5558 (2007).

    Article  CAS  Google Scholar 

  17. Giri, R. et al. Palladium-catalyzed methylation and arylation of sp2 and sp3 C–H bonds in simple carboxylic acids. J. Am. Chem. Soc. 129, 3510–3511 (2007).

    Article  CAS  PubMed  Google Scholar 

  18. Wang, D. H., Mei, T. S. & Yu, J.-Q. Versatile Pd(II)-catalyzed C−H activation/aryl−aryl coupling of benzoic and phenyl acetic acids. J. Am. Chem. Soc. 130, 17676–17677 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Wang, D.-H., Wasa, M., Giri, R. & Yu, J.-Q. Pd(II)-catalyzed cross-coupling of sp3 C–H bonds with sp2 and sp3 boronic acids using air as the oxidant. J. Am. Chem. Soc. 130, 7190–7191 (2008).

    Article  CAS  PubMed  Google Scholar 

  20. Spangler, J. E., Kobayashi, Y., Verma, P., Wang, D. H. & Yu, J.-Q. α-Arylation of saturated azacycles and N-methylamines via palladium(II)-catalyzed C(sp3)–H coupling. J. Am. Chem. Soc. 137, 11876–11879 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Nishikata, T., Abela, A. R., Huang, S. & Lipshutz, B. H. Cationic palladium(II) catalysis: C−H activation/Suzuki−Miyaura couplings at room temperature. J. Am. Chem. Soc. 132, 4978–4979 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Tredwell, M. J. et al. Palladium(II)‐catalyzed C−H bond arylation of electron‐deficient arenes at room temperature. Angew. Chem. Int. Ed. 50, 1076–1079 (2011).

    Article  CAS  Google Scholar 

  23. Goswami, N., Bhattacharya, T. & Maiti, D. Transient directing ligands for selective metal-catalysed C–H activation. Nat. Rev. Chem. 5, 646–659 (2021).

    Article  CAS  Google Scholar 

  24. Sauermann, N., Meyer, T. H., Qiu, Y. & Ackermann, L. Electrocatalytic C–H activation. ACS Catal. 8, 7086–7103 (2018).

    Article  CAS  Google Scholar 

  25. Ma, C., Fang, P. & Mei, T. S. Recent advances in C–H functionalization using electrochemical transition metal catalysis. ACS Catal. 8, 7179–7189 (2018).

    Article  CAS  Google Scholar 

  26. Jiao, K. J., Xing, Y. K., Yang, Q. L., Qiu, H. & Mei, T. S. Site-selective C–H functionalization via synergistic use of electrochemistry and transition metal catalysis. Acc. Chem. Res. 53, 300–310 (2020).

    Article  CAS  PubMed  Google Scholar 

  27. Ma, C. et al. Palladium-catalyzed C–H activation/C–C cross-coupling reactions via electrochemistry. Chem. Commun. 53, 12189–12192 (2017).

    Article  CAS  Google Scholar 

  28. Shi, B.-F., Maugel, N., Zhang, Y.-H. & Yu, J.-Q. PdII-catalyzed enantioselective activation of C(sp2)–H and C(sp3)–H bonds using monoprotected amino acids as chiral ligands. Angew. Chem. Int. Ed. 47, 4882–4886 (2008).

    Article  CAS  Google Scholar 

  29. Wasa, M., Engle, K. M., Lin, D. W., Yoo, E. J. & Yu, J.-Q. Pd(II)-catalyzed enantioselective C–H activation of cyclopropanes. J. Am. Chem. Soc. 133, 19598–19601 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Xiao, K. J. et al. Palladium(II)-catalyzed enantioselective C(sp3)–H activation using a chiral hydroxamic acid ligand. J. Am. Chem. Soc. 136, 8138–8142 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Chan, K. S. et al. Ligand-enabled cross-coupling of C(sp3)–H bonds with arylboron reagents via Pd(II)/Pd(0) catalysis. Nat. Chem. 6, 146–150 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Jain, P., Verma, P., Xia, G. & Yu, J.-Q. Enantioselective amine α-functionalization via palladium-catalysed C–H arylation of thioamides. Nat. Chem. 9, 140–144 (2017).

    Article  CAS  PubMed  Google Scholar 

  33. Kakiuchi, F., Kan, S., Igi, K., Chatani, N. & Murai, S. A ruthenium-catalyzed reaction of aromatic ketones with arylboronates: a new method for the arylation of aromatic compounds via C−H bond cleavage. J. Am. Chem. Soc. 125, 1698–1699 (2003).

    Article  CAS  PubMed  Google Scholar 

  34. Kakiuchi, F., Matsuura, Y., Kan, S. & Chatani, N. A RuH2(CO)(PPh3)3-catalyzed regioselective arylation of aromatic ketones with arylboronates via carbon−hydrogen bond cleavage. J. Am. Chem. Soc. 127, 5936–5945 (2005).

    Article  CAS  PubMed  Google Scholar 

  35. Pastine, S. J., Gribkov, D. V. & Sames, D. sp3 C−H bond arylation directed by amidine protecting group: α-arylation of pyrrolidines and piperidines. J. Am. Chem. Soc. 128, 14220–14221 (2006).

    Article  CAS  PubMed  Google Scholar 

  36. Hubrich, J., Himmler, T., Rodefeld, L. & Ackermann, L. Ruthenium (II)‐catalyzed C–H arylation of anilides with boronic acids, boronic acids and potassium trifluoroborates. Adv. Synth. Catal. 357, 474–480 (2015).

    Article  CAS  Google Scholar 

  37. Nareddy, P., Jordan, F., Brenner-Moyer, S. E. & Szostak, M. Ruthenium (II)-catalyzed regioselective C–H arylation of cyclic and N,N-dialkyl benzamides with boronic acids by weak coordination. ACS Catal. 6, 4755–4759 (2016).

    Article  CAS  Google Scholar 

  38. Kim, J., Shin, K., Jin, S., Kim, D. & Chang, S. Oxidatively induced reductive elimination: exploring the scope and catalyst systems with Ir, Rh, and Ru complexes. J. Am. Chem. Soc. 141, 4137–4146 (2019).

    Article  CAS  PubMed  Google Scholar 

  39. Karthikeyan, J., Haridharan, R. & Cheng, C. H. Rhodium(III)‐catalyzed oxidative C–H coupling of N‐methoxybenzamides with aryl boronic acids: one‐pot synthesis of phenanthridinones. Angew. Chem. Int. Ed. 51, 12343–12347 (2012).

    Article  CAS  Google Scholar 

  40. Jiang, X. et al. Merging C–H vinylation with switchable 6π-electrocyclizations for divergent heterocycle synthesis. J. Am. Chem. Soc. 142, 15585–15594 (2020).

    Article  CAS  PubMed  Google Scholar 

  41. Aynetdinova, D. et al. Installing the ‘magic methyl’–C–H methylation in synthesis. Chem. Soc. Rev. 50, 5517–5563 (2021).

    Article  CAS  PubMed  Google Scholar 

  42. Friis, S. D., Johansson, M. J. & Ackermann, L. Cobalt-catalysed C–H methylation for late-stage drug diversification. Nat. Chem. 12, 511–519 (2020).

    Article  CAS  PubMed  Google Scholar 

  43. Ni, S. et al. Mechanochemical solvent-free catalytic C–H methylation. Angew. Chem. Int. Ed. 60, 6660–6666 (2021).

    Article  CAS  Google Scholar 

  44. Yang, S., Li, B., Wan, X. & Shi, Z. Ortho arylation of acetanilides via Pd(II)-catalyzed C−H functionalization. J. Am. Chem. Soc. 129, 6066–6067 (2007).

    Article  CAS  PubMed  Google Scholar 

  45. Zhou, H., Xu, Y. H., Chung, W. J. & Loh, T. P. Palladium‐catalyzed direct arylation of cyclic enamides with aryl silanes by sp2 C–H activation. Angew. Chem. Int. Ed. 48, 5355–5357 (2009).

    Article  CAS  Google Scholar 

  46. He, J., Takise, R., Fu, H. & Yu, J.-Q. Ligand-enabled cross-coupling of C(sp3)–H bonds with arylsilanes. J. Am. Chem. Soc. 137, 4618–4621 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Shang, M. et al. Exceedingly fast copper(II)-promoted ortho C–H trifluoromethylation of arenes using TMSCF3. Angew. Chem. Int. Ed. 53, 10439–10442 (2014).

    Article  CAS  Google Scholar 

  48. Nareddy, P., Jordan, F. & Szostak, M. Highly chemoselective ruthenium (II)-catalyzed direct arylation of cyclic and N,N-dialkyl benzamides with aryl silanes. Chem. Sci. 8, 3204–3210 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Nareddy, P., Jordan, F. & Szostak, M. Ruthenium(II)-catalyzed direct C–H arylation of indoles with arylsilanes in water. Org. Lett. 20, 341–344 (2018).

    Article  CAS  PubMed  Google Scholar 

  50. Lu, M. Z., Lu, P., Xu, Y. H. & Loh, T. P. Mild Rh(III)-catalyzed direct C–H bond arylation of (hetero)arenes with arylsilanes in aqueous media. Org. Lett. 16, 2614–2617 (2014).

    Article  CAS  PubMed  Google Scholar 

  51. Shin, K., Park, Y., Baik, M. H. & Chang, S. Iridium-catalysed arylation of C–H bonds enabled by oxidatively induced reductive elimination. Nat. Chem. 10, 218–224 (2018).

    Article  CAS  PubMed  Google Scholar 

  52. Norinder, J., Matsumoto, A., Yoshikai, N. & Nakamura, E. Iron-catalyzed direct arylation through directed C−H bond activation. J. Am. Chem. Soc. 130, 5858–5859 (2008).

    Article  CAS  PubMed  Google Scholar 

  53. Rana, S., Biswas, J. P., Paul, S., Paik, A. & Maiti, D. Organic synthesis with the most abundant transition metal–iron: from rust to multitasking catalysts. Chem. Soc. Rev. 50, 243–472 (2021).

    Article  CAS  PubMed  Google Scholar 

  54. Honeycutt, A. P. & Hoover, J. M. Nickel-catalyzed oxidative decarboxylative (hetero)arylation of unactivated C–H bonds: Ni and Ag synergy. ACS Catal. 7, 4597–4601 (2017).

    Article  CAS  Google Scholar 

  55. Mudarra, Á. L., de Salinas, S. M. & Pérez-Temprano, M. H. Beyond the traditional roles of Ag in catalysis: the transmetalating ability of organosilver(I) species in Pd-catalysed reactions. Org. Biomol. Chem. 17, 1655–1667 (2019).

    Article  CAS  PubMed  Google Scholar 

  56. Park, Y., Kim, Y. & Chang, S. Transition metal-catalyzed C–H amination: scope, mechanism, and applications. Chem. Rev. 117, 9247–9301 (2017).

    Article  CAS  PubMed  Google Scholar 

  57. Timsina, Y. N., Gupton, B. F. & Ellis, K. C. Palladium-catalyzed C–H amination of C(sp2) and C(sp3)–H bonds: mechanism and scope for N-based molecule synthesis. ACS Catal. 8, 5732–5776 (2018).

    Article  CAS  Google Scholar 

  58. Jordan-Hore, J. A., Johansson, C. C. C., Gulias, M., Beck, E. M. & Gaunt, M. J. Oxidative Pd(II)-catalyzed C–H bond amination to carbazole at ambient temperature. J. Am. Chem. Soc. 130, 16184–16186 (2008).

    Article  CAS  PubMed  Google Scholar 

  59. Choi, S., Chatterjee, T., Choi, W. J., You, Y. & Cho, E. J. Synthesis of carbazoles by a merged visible light photoredox and palladium-catalyzed process. ACS Catal. 5, 4796–4802 (2015).

    Article  CAS  Google Scholar 

  60. Wasa, M. & Yu, J.-Q. Synthesis of β-, γ-, and δ-lactams via Pd(II)-catalyzed C−H activation reactions. J. Am. Chem. Soc. 130, 14058–14059 (2008).

    Article  CAS  PubMed  Google Scholar 

  61. Li, J.-J., Mei, T.-S. & Yu, J.-Q. Synthesis of indolines and tetrahydroisoquinolines from arylethylamines by PdII-catalyzed C−H activation reactions. Angew. Chem. Int. Ed. 47, 6452–6455 (2008).

    Article  CAS  Google Scholar 

  62. Mei, T.-S., Wang, X. & Yu, J.-Q. Pd(II)-catalyzed amination of C–H bonds using single-electron or two-electron oxidants. J. Am. Chem. Soc. 131, 10806–10807 (2009).

    Article  CAS  PubMed  Google Scholar 

  63. Engle, K. M., Mei, T.-S., Wang, X. & Yu, J.-Q. Bystanding F+ oxidants enable selective reductive elimination from high-valent metal centers in catalysis. Angew. Chem. Int. Ed. 50, 1478–1491 (2011).

    Article  CAS  Google Scholar 

  64. Pérez-Temprano, M. H., Racowski, J. M., Kampf, J. W. & Sanford, M. S. Competition between sp3-C−N vs sp3-C−F reductive elimination from PdIV complexes. J. Am. Chem. Soc. 136, 4097–4100 (2014).

    Article  PubMed  Google Scholar 

  65. He, G., Lu, G., Guo, Z., Liu, P. & Chen, G. Benzazetidine synthesis via palladium-catalysed intramolecular C−H amination. Nat. Chem. 8, 1131–1136 (2016).

    Article  CAS  Google Scholar 

  66. Zhang, J. & Pérez-Temprano, M. H. Intramolecular C(sp3)–H bond amination strategies for the synthesis of saturated N-containing heterocycles. Chimia 74, 895–903 (2020).

    Article  CAS  PubMed  Google Scholar 

  67. He, G., Zhao, Y., Zhang, S., Lu, C. & Chen, G. Highly efficient syntheses of azetidines, pyrrolidines, and indolines via palladium catalyzed intramolecular amination of C(sp3)−H and C(sp2)–H bonds at γ and δ positions. J. Am. Chem. Soc. 134, 3–6 (2012).

    Article  CAS  PubMed  Google Scholar 

  68. Nadres, E. T. & Daugulis, O. Heterocycle synthesis via direct C−H/N−H coupling. J. Am. Chem. Soc. 134, 7–10 (2012).

    Article  CAS  PubMed  Google Scholar 

  69. He, G., Zhang, S.-Y., Nack, W. A., Li, Q. & Chen, G. Use of a readily removable auxiliary group for the synthesis of pyrrolidones by the palladium-catalyzed intramolecular amination of unactivated γ C(sp3)–H bonds. Angew. Chem. Int. Ed. 52, 11124–11128 (2013).

    Article  CAS  Google Scholar 

  70. McNally, A., Haffemayer, B., Collins, B. S. L. & Gaunt, M. J. Palladium-catalysed C–H activation of aliphatic amines to give strained nitrogen heterocycles. Nature 510, 129–133 (2014).

    Article  CAS  PubMed  Google Scholar 

  71. Wang, Z., Ni, J., Kuninobu, Y. & Kanai, M. Copper-catalyzed intramolecular C(sp3)–H and C(sp2)–H amidation by oxidative cyclization. Angew. Chem. Int. Ed. 53, 3496–3499 (2014).

    Article  CAS  Google Scholar 

  72. Wu, X., Zhao, Y. & Ge, H. Nickel-catalyzed site-selective amidation of unactivated C(sp3)–H bonds. Chem. Eur. J. 20, 9530–9533 (2014).

    Article  CAS  PubMed  Google Scholar 

  73. Wu, X. et al. Cobalt-catalysed site-selective intra- and intermolecular dehydrogenative amination of unactivated sp3 carbons. Nat. Commun. 6, 6462 (2015).

    Article  CAS  PubMed  Google Scholar 

  74. Yang, M. et al. Silver-catalysed direct amination of unactivated C–H bonds of functionalized molecules. Nat. Commun. 5, 4707 (2014).

    Article  CAS  PubMed  Google Scholar 

  75. Chen, X., Hao, X.-S., Goodhue, C. E. & Yu, J.-Q. Cu(II)-catalyzed functionalizations of aryl C–H bonds using O2 as an oxidant. J. Am. Chem. Soc. 128, 6790–6791 (2006).

    Article  CAS  PubMed  Google Scholar 

  76. John, A. & Nicholas, K. M. Copper-catalyzed amidation of 2-phenylpyridine with oxygen as the terminal oxidant. J. Org. Chem. 76, 4158–4162 (2011).

    Article  CAS  PubMed  Google Scholar 

  77. Tran, L. D., Roane, J. & Daugulis, O. Directed amination of non-acidic arene C–H bonds by a copper–silver catalytic system. Angew. Chem. Int. Ed. 52, 6043–6046 (2013).

    Article  CAS  Google Scholar 

  78. Roane, J. & Daugulis, O. A general method for aminoquinoline-directed, copper-catalyzed sp2 C–H bond amination. J. Am. Chem. Soc. 138, 4601–4607 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Yu, J.-Q. et al. Cu(II)-mediated C−H amidation and amination of arenes: exceptional compatibility with heterocycles. J. Am. Chem. Soc. 136, 3354–3357 (2014).

    Article  PubMed  Google Scholar 

  80. Kim, H., Heo, J., Kim, J., Baik, M.-H. & Chang, S. Copper-mediated amination of aryl C−H bonds with the direct use of aqueous ammonia via a disproportionation pathway. J. Am. Chem. Soc. 140, 14350–14356 (2018).

    Article  CAS  PubMed  Google Scholar 

  81. Xiao, B., Gong, T.-J., Xu, J., Liu, Z.-J. & Liu, L. Palladium-catalyzed intermolecular directed C–H amidation of aromatic ketones. J. Am. Chem. Soc. 133, 1466–1474 (2011).

    Article  CAS  PubMed  Google Scholar 

  82. Sauermann, N., Mei, R. & Ackermann, L. Electrochemical C−H amination by cobalt catalysis in a renewable solvent. Angew. Chem. Int. Ed. 57, 5090–5094 (2018).

    Article  CAS  Google Scholar 

  83. Gao, X., Wang, P., Zeng, L., Tang, S. & Lei, A. Cobalt(II)-catalyzed electrooxidative C−H amination of arenes with alkylamines. J. Am. Chem. Soc. 140, 4195–4199 (2018).

    Article  CAS  PubMed  Google Scholar 

  84. Wang, X., Lu, Y., Dai, H.-X. & Yu, J.-Q. Pd(II)-catalyzed hydroxyl-directed C–H activation/C–O cyclization: expedient construction of dihydrobenzofurans. J. Am. Chem. Soc. 132, 12203–12205 (2010).

    Article  CAS  PubMed  Google Scholar 

  85. Xiao, B. et al. Synthesis of dibenzofurans via palladium-catalyzed phenol-directed C–H activation/C–O cyclization. J. Am. Chem. Soc. 133, 9259–9253 (2011).

    Article  Google Scholar 

  86. Camasso, N. M., Pérez-Temprano, M. H. & Sanford, M. S. C(sp3)−O bond-forming reductive elimination from PdIV with diverse oxygen nucleophiles. J. Am. Chem. Soc. 136, 12771–12775 (2014).

    Article  CAS  PubMed  Google Scholar 

  87. Park, H., Verma, P., Hong, K. & Yu, J.-Q. Controlling Pd(IV) reductive elimination pathways enables Pd(II)-catalysed enantioselective C(sp3)−H fluorination. Nat. Chem. 10, 755–762 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Chen, Y. Q., Wu, Y., Wang, Z., Qiao, J. X. & Yu, J. Q. Transient directing group enabled Pd-catalyzed γ-C(sp3)−H oxygenation of alkyl amines. ACS Catal. 10, 5657–5662 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Bhadra, S., Dzik, W. I. & Gooßen, L. J. Synthesis of aryl ethers from benzoates through carboxylate-directed C–H-activating alkoxylation with concomitant protodecarboxylation. Angew. Chem. Int. Ed. 52, 2959–2962 (2013).

    Article  CAS  Google Scholar 

  90. Bhadra, S., Matheis, C., Katayev, D. & Gooßen, L. J. Copper-catalyzed dehydrogenative coupling of arenes with alcohols. Angew. Chem. Int. Ed. 52, 9279–9283 (2013).

    Article  CAS  Google Scholar 

  91. Kakiuchi, F. et al. Palladium-catalyzed aromatic C−H halogenation with hydrogen halides by means of electrochemical oxidation. J. Am. Chem. Soc. 131, 11310–11311 (2009).

    Article  CAS  PubMed  Google Scholar 

  92. Yang, Q.-L. et al. Palladium-catalyzed C(sp3)−H oxygenation via electrochemical oxidation. J. Am. Chem. Soc. 139, 3293–3298 (2017).

    Article  CAS  PubMed  Google Scholar 

  93. Shrestha, A., Lee, M., Dunn, A. L. & Sanford, M. S. Palladium-catalyzed C−H bond acetoxylation via electrochemical oxidation. Org. Lett. 20, 204–207 (2018).

    Article  CAS  PubMed  Google Scholar 

  94. Sauermann, N., Meyer, T. H., Tian, C. & Ackermann, L. Electrochemical cobalt-catalyzed C−H oxygenation at room temperature. J. Am. Chem. Soc. 139, 18452–18455 (2017).

    Article  CAS  PubMed  Google Scholar 

  95. Jin, S., Kim, J., Kim, D., Park, J. W. & Chang, S. Electrolytic C−H oxygenation via oxidatively induced reductive elimination in Rh catalysis. ACS Catal. 11, 6590–6595 (2021).

    Article  CAS  Google Scholar 

  96. Gensch, T., Klauck, F. J. R. & Glorius, F. Cobalt-catalyzed C−H thiolation through dehydrogenative cross-coupling. Angew. Chem. Int. Ed. 55, 11287–11291 (2016).

    Article  CAS  Google Scholar 

  97. Liu, X.-G., Li, Q. & Wang, H. (Pentamethylcyclopentadienyl)cobalt(III)-catalyzed direct trifluoromethylthiolation of arenes via C−H activation. Adv. Synth. Catal. 359, 1942–1946 (2017).

    Article  CAS  Google Scholar 

  98. López-Resano, S. et al. Redefining the mechanistic scenario of carbon−sulfur nucleophilic coupling via high-valent Cp*CoIV species. Angew. Chem. Int. Ed. 60, 11217–11221 (2021).

    Article  Google Scholar 

  99. Laskar, R. et al. Sustainable C–H functionalization under ball-milling, microwave-irradiation and aqueous media. Green Chem. 24, 2296–2320 (2022).

    Article  CAS  Google Scholar 

  100. Sinha, S. M. et al. Toolbox for distal C–H bond functionalizations in organic molecules. Chem. Rev. 122, 5682–5841 (2022).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by ICIQ, CERCA Programme/Generalitat de Catalunya and the Ministerio de Ciencia e Innovación/Agencia Estatal de Investigación (MICINN/AEI/Severo Ochoa Excellence Accreditation 2023—CEX2019-000925-S; grant no. PID2020-112733GB-I00). S.B. thanks the Ministerio de Universidades for the FPU predoctoral contract (FPU20/00610). J.Z. thanks the China Scholarship Council for the predoctoral fellowship. S.L.-R. thanks the Generalitat de Catalunya for the FI–Agaur predoctoral contract. A.C. is grateful for the MSCA-COFUND postdoctoral fellowship granted by I2-ICIQ Impulsion Programme (GA 801474).

Author information

Authors and Affiliations

Authors

Contributions

S.B., J.Z., S.L.-R. and A.C. contributed to the literature search, the writing of the article and the preparation of the figures. M.H.P.-T. contributed to the literature search and editing of the manuscript, coordinated the project and supervised the writing.

Corresponding author

Correspondence to Mónica H. Pérez-Temprano.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Synthesis thanks Debabrata Maiti and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editor: Alison Stoddart, in collaboration with the Nature Synthesis team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barranco, S., Zhang, J., López-Resano, S. et al. Transition metal-catalysed directed C–H functionalization with nucleophiles. Nat. Synth 1, 841–853 (2022). https://doi.org/10.1038/s44160-022-00180-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44160-022-00180-8

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing