Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Cyclic–acyclic monomers metathesis polymerization for the synthesis of degradable thermosets, thermoplastics and elastomers

Abstract

Commercially available synthetic polymers have a variety of properties that range from ultrarigid thermosets to high-performance elastomers and include thermoplastic materials in between. However, their superior properties, such as durability and strength, are also responsible for their environmental persistence. The development of degradable and recyclable polymers is an attractive strategy to tackle this accumulation. Here we report cyclic–acyclic monomers metathesis polymerization to produce degradable thermoset, thermoplastic and elastomeric polymers. Specifically, metathesis-based copolymerization of dicyclopentadiene with a series of commercially available or easily accessible diene comonomers that bear degradable moieties can afford degradable polydicyclopentadiene thermosets. The use of triene comonomers can increase the cross-linking density and improve material properties. Copolymerization of these diene comonomers with cyclooctene or norbornene can afford degradable linear thermoplastic polymers. The introduction of a branched third comonomer leads to the formation of degradable elastomers. The material properties and degradability through different routes (including fluoride, acid and base treatment) of these polymers are investigated.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Known metathesis routes and the CAMMP approach for the synthesis of degradable polymers.
Fig. 2: ROMP approaches based on cyclic silyl ether monomers versus CAMMP approaches based on dienes to access degradable thermoset and linear polymers.
Fig. 3: Mechanical properties of the degradable thermoset materials.
Fig. 4: Degradation and recycling of the thermoset materials.
Fig. 5: Properties and recycling of the degradable thermoplastics and elastomers.

Similar content being viewed by others

Data availability

Source data are provided with this paper. All the data necessary to support the conclusions of this paper are available in the Supplementary Information, which includes materials, detailed experimental procedures and characterization, as well as the properties of the degradable materials (Supplementary Figs. 117), NMR spectroscopy of the monomers (Supplementary Figs. 1828), NMR spectroscopy, SEC and DSC of the linear polymers (Supplementary Figs. 2982) and NMR spectroscopy, SEC, DSC and FTIR of the degradation products (Supplementary Figs. 83106).

References

  1. Sun, H. et al. Architecture-transformable polymers: reshaping the future of stimuli-responsive polymers. Prog. Polym. Sci. 89, 61–75 (2019).

    Article  CAS  Google Scholar 

  2. Abd-El-Aziz, A. S. et al. The next 100 years of polymer science. Macromol. Chem. Phys. 221, 2000216 (2020).

    Article  CAS  Google Scholar 

  3. Geyer, R., Jambeck, J. R. & Law, K. L. Production, use, and fate of all plastics ever made. Sci. Adv. 3, e1700782 (2017).

    Article  Google Scholar 

  4. Rahimi, A. & García, J. M. Chemical recycling of waste plastics for new materials production. Nat. Rev. Chem. 1, 0046 (2017).

    Article  Google Scholar 

  5. Vollmer, I. et al. Beyond mechanical recycling: giving new life to plastic waste. Angew. Chem. Int. Ed. 59, 15402–15423 (2020).

    Article  CAS  Google Scholar 

  6. Chen, C. C., Dai, L., Ma, L. & Guo, R.-T. Enzymatic degradation of plant biomass and synthetic polymers. Nat. Rev. Chem. 4, 114–126 (2020).

    Article  Google Scholar 

  7. Wei, R. et al. Possibilities and limitations of biotechnological plastic degradation and recycling. Nat. Catal. 3, 867–871 (2020).

    Article  CAS  Google Scholar 

  8. Zhu, Y., Romain, C. & Williams, C. K. Sustainable polymers from renewable resources. Nature 540, 354–362 (2016).

    Article  CAS  Google Scholar 

  9. LaShanda, T. J. K., Thomas, H. E., Brett, A. H. & Anthony, J. R. Toward polymer upcycling—adding value and tackling circularity. Science 373, 66–69 (2021).

    Article  Google Scholar 

  10. Hou, Q. D. et al. Upcycling and catalytic degradation of plastic wastes. Cell Reports Phys. Sci. 2, 100514 (2021).

    Article  CAS  Google Scholar 

  11. Coates, G. W. & Getzler, Y. D. Y. L. Chemical recycling to monomer for an ideal, circular polymer economy. Nat. Rev. Mater. 5, 501–516 (2020).

    Article  CAS  Google Scholar 

  12. Hong, M. & Chen, E. Y.-X. Future directions for sustainable polymers. Trends Chem. 1, 148–151 (2019).

    Article  CAS  Google Scholar 

  13. Zhu, J.-B., Watson, E. M., Tang, J. & Chen, E. Y.-X. A synthetic polymer system with repeatable chemical recyclability. Science 360, 398–403 (2018).

    Article  CAS  Google Scholar 

  14. Ogba, O. M., Warner, N. C., O’Leary, D. J. & Grubbs, R. H. Recent advances in ruthenium-based olefin metathesis. Chem. Soc. Rev. 47, 4510–4544 (2018).

    Article  CAS  Google Scholar 

  15. Sun, H., Liang, Y. F., Thompson, M. P. & Gianneschi, N. C. Degradable polymers via olefin metathesis polymerization. Prog. Polym. Sci. 120, 101427 (2021).

    Article  CAS  Google Scholar 

  16. Pearce, A. K., Foster, J. C. & O’Reilly, R. K. Recent developments in entropy-driven ring-opening metathesis polymerization: mechanistic considerations, unique functionality, and sequence control. J. Polym. Sci. A 57, 1621–1634 (2019).

    Article  CAS  Google Scholar 

  17. Xue, Z. & Mayer, M. F. Entropy-driven ring-opening olefin metathesis polymerizations of macrocycles. Soft Matter 5, 4600–4611 (2009).

    Article  CAS  Google Scholar 

  18. Monfette, S. & Fogg, D. E. Equilibrium ring-closing metathesis. Chem. Rev. 109, 3783–3816 (2009).

    Article  CAS  Google Scholar 

  19. Feist, J. D., Lee, D. C. & Xia, Y. A versatile approach for the synthesis of degradable polymers via controlled ring-opening metathesis copolymerization. Nat. Chem. 14, 53–58 (2022).

    Article  CAS  Google Scholar 

  20. Feist, J. D. & Xia, Y. Enol ethers are effective monomers for ring-opening metathesis polymerization: synthesis of degradable and depolymerizable poly(2,3-dihydrofuran). J. Am. Chem. Soc. 142, 1186–1189 (2020).

    Article  CAS  Google Scholar 

  21. Elling, B. R., Su, J. K. & Xia, Y. Degradable polyacetals/ketals from alternating ring-opening metathesis polymerization. ACS Macro Lett. 21, 180–184 (2020).

    Article  Google Scholar 

  22. Sathe, D. et al. Olefin metathesis-based chemically recyclable polymers enabled by fused-ring monomers. Nat. Chem. 13, 743–750 (2021).

    Article  CAS  Google Scholar 

  23. Zhou, J. F., Sathe, D. & Wang, J. P. Understanding the structure–polymerization thermodynamics relationships of fused-ring cyclooctenes for developing chemically recyclable polymers. J. Am. Chem. Soc. 144, 928–934 (2022).

    Article  CAS  Google Scholar 

  24. Gutekunst, W. R. & Hawker, C. J. A general approach to sequence-controlled polymers using macrocyclic ring opening metathesis polymerization. J. Am. Chem. Soc. 137, 8038–8041 (2015).

    Article  CAS  Google Scholar 

  25. Fu, L. B., Sui, X. L., Crolais, A. E. & Gutekunst, W. R. Modular approach to degradable acetal polymers using cascade enyne metathesis polymerization. Angew. Chem. Int. Ed. 58, 15726–15730 (2019).

    Article  CAS  Google Scholar 

  26. Bhaumik, A., Peterson, G. I., Kang, C. & Choi, T. L. Controlled living cascade polymerization to make fully degradable sugar-based polymers from d-glucose and d-galactose. J. Am. Chem. Soc. 141, 12207–12211 (2019).

    Article  CAS  Google Scholar 

  27. Sui, X. L. et al. Alternating cascade metathesis polymerization of enynes and cyclic enol ethers with active ruthenium Fischer carbenes. J. Am. Chem. Soc. 142, 12942–12947 (2020).

    Article  CAS  Google Scholar 

  28. Silva, L. C., da., Rojas, G., Schulzc, M. D. & Wagener, K. B. Acyclic diene metathesis polymerization: history, methods and applications. Prog. Polym. Sci. 69, 79–107 (2017).

    Article  Google Scholar 

  29. Pribyl, J., Wagener, K. B. & Rojas, G. ADMET polymers: synthesis, structure elucidation, and function. Mater. Chem. Front. 5, 14–43 (2021).

    Article  CAS  Google Scholar 

  30. Atallah, P., Wagener, K. B. & Schulz, M. D. ADMET: the future revealed. Macromolecules 46, 4735–4741 (2013).

    Article  CAS  Google Scholar 

  31. Choi, T.-L., Rutenberg, I. M. & Grubbs, R. H. Synthesis of A,B-alternating copolymers by ring-opening-insertion-metathesis polymerization. Angew. Chem. Int. Ed. 41, 3839–3841 (2002).

    Article  CAS  Google Scholar 

  32. Ilker, M. F. & Coughlin, E. B. Alternating copolymerizations of polar and nonpolar cyclic olefins by ring-opening metathesis polymerization. Macromolecules 35, 54–58 (2002).

    Article  CAS  Google Scholar 

  33. Amir-Ebrahimi, V. & Rooney, J. J. Remarkable alternating effect in metathesis copolymerization of norbornene and cyclopentene using modified Grubbs ruthenium initiators. J. Mol. Catal. A 208, 115–121 (2004).

    Article  CAS  Google Scholar 

  34. Lichtenheldt, M. et al. Alternating ring opening metathesis copolymerization by Grubbs-type initiators with unsymmetrical N-heterocyclic carbenes. Chem. Eur. J. 15, 9451–9457 (2009).

    Article  CAS  Google Scholar 

  35. Chauveau, C. et al. α,ω-Bis(trialkoxysilyl) telechelic polyolefin/polyether copolymers for adhesive applications using ring-opening insertion metathesis polymerization combined with a chain-transfer agent. ACS Appl. Polym. Mater. 1, 1540–1546 (2019).

    Article  CAS  Google Scholar 

  36. Chauveau, C. et al. Polyolefin/polyether alternated copolymers: silyl-modified polymers as promising monocomponent precursors to adhesives. ACS Appl. Polym. Mater. 2, 5135–5146 (2020).

    Article  CAS  Google Scholar 

  37. Shieh, P. et al. Cleavable comonomers enable degradable, recyclable thermoset plastics. Nature 583, 542–547 (2020).

    Article  CAS  Google Scholar 

  38. Husted, K. E. L. et al. Molecularly designed additives for chemically deconstructable thermosets without compromised thermomechanical properties. ACS Macro Lett. 10, 805–810 (2021).

    Article  CAS  Google Scholar 

  39. Shieh, P., Nguyen, H. V. T. & Johnson, J. A. Tailored silyl ether monomers enable backbone-degradable polynorbornene-based linear, bottlebrush and star copolymers through ROMP. Nat. Chem. 11, 1124–1132 (2019).

    Article  CAS  Google Scholar 

  40. Nuyken, O. & Pask, S. D. Ring-opening polymerization—an introductory review. Polymers 5, 361–403 (2013).

    Article  Google Scholar 

  41. Robertson, I. D. et al. Rapid energy-efficient manufacturing of polymers and composites via frontal polymerization. Nature 557, 223–227 (2018).

    Article  CAS  Google Scholar 

  42. Sebastijan, K. I. C. & Christian, S. Ring-opening metathesis polymerization derived poly(dicyclopentadiene) based materials. Mater. Chem. Front. 4, 2235–2255 (2020).

    Article  Google Scholar 

  43. Wang, P. et al. Enhanced dielectric properties of high glass transition temperature PDCPD/CNT composites by frontal ring-opening metathesis polymerization. Adv. Comp. Hybrid Mater. 4, 639–646 (2021).

    Article  CAS  Google Scholar 

  44. Wang, Y. Q. et al. Dramatic toughness enhancement of polydicyclopentadiene composites by incorporating low amounts of vinyl-functionalized SiO2. Ind. Eng. Chem. Res. 56, 4750–4757 (2017).

    Article  CAS  Google Scholar 

  45. Takayama, S. et al. Topographical micropatterning of poly(dimethylsiloxane) using laminar flows of liquids in capillaries. Adv. Mater. 13, 570–574 (2001).

    Article  CAS  Google Scholar 

  46. Yang, Y. et al. Recycling of composite materials. Chem. Eng. Process 51, 53–68 (2012).

    Article  CAS  Google Scholar 

  47. Jin, Y. H. et al. Malleable and recyclable thermosets: the next generation of plastics. Matter 1, 1456–1493 (2019).

    Article  Google Scholar 

  48. Albertsson, A. C. & Hakkarainen, M. Designed to degrade. Science 358, 872–873 (2017).

    Article  CAS  Google Scholar 

  49. Oliveux, G., Dandy, L. O. & Leeke, G. A. Current status of recycling of fibre reinforced polymers: review of technologies, reuse and resulting properties. Prog. Mater Sci. 72, 61–99 (2015).

    Article  CAS  Google Scholar 

  50. Sperling, L. H. Introduction to Physical Polymer Science (John Wiley & Sons, 2005).

  51. Jokar, M. et al. Melt production and antimicrobial efficiency of low-density polyethylene (LDPE)–silver nanocomposite film. Food Bioproc. Technol. 5, 719–728 (2012).

    Article  CAS  Google Scholar 

  52. Giorgia, Z. & Giuseppe, L. Polyolefin thermoplastic elastomers from polymerization catalysis: advantages, pitfalls and future challenges. Prog. Polym. Sci. 113, 101342 (2021).

    Article  Google Scholar 

  53. Kobayashi, S., Pitet, L. M. & Hillmyer, M. A. Regio- and stereoselective ring-opening metathesis polymerization of 3-substituted cyclooctenes. J. Am. Chem. Soc. 133, 5794–5797 (2011).

    Article  CAS  Google Scholar 

  54. Ayoub, G. et al. Effects of crystal content on the mechanical behaviour of polyethylene under finite strains: experiments and constitutive modelling. Int. J. Plast. 27, 492–511 (2011).

    Article  CAS  Google Scholar 

  55. Wang, H. P., Chum, S. P., Hiltner, A. & Baer, E. Comparing elastomeric behavior of block and random ethylene–octene copolymers. J. Appl. Polym. Sci. 113, 3236–3244 (2009).

    Article  CAS  Google Scholar 

  56. Häußler, M., Eck, M., Rothauer, D. & Mecking, S. Closed-loop recycling of polyethylene-like materials. Nature 590, 423–427 (2021).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by National Key R&D Program of China (no. 2021YFA1501700), National Natural Science Foundation of China (no. 52025031, U19B6001 and U1904212) and the K. C. Wong Education Foundation.

Author information

Authors and Affiliations

Authors

Contributions

C.C. conceived the project. G.S. performed the experiments regarding the synthesis and characterization. Both authors contributed to the data analysis and paper writing.

Corresponding author

Correspondence to Changle Chen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Synthesis thanks the anonymous reviewers for their contribution to the peer review of this work. Primary Handling Editor: Alison Stoddart, in collaboration with the Nature Synthesis team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Experimental procedures, characterization, and properties of the degradable materials (Supplementary Figs. 1–17), NMR spectroscopy of monomers (Supplementary Figs. 18–28), NMR spectroscopy, SEC, DSC of linear polymers (Supplementary Figs. 29–82), and NMR spectroscopy, SEC, DSC, FTIR of degradation products (Supplementary Figs. 83–106).

Source data

Source Data Fig. 3

Stress–strain curves and DMA curves.

Source Data Fig. 4

1H NMR spectrum of the degraded product for M4 derived polydicyclopentadiene and stress–strain curves for samples of new and recycled polydicyclopentadiene.

Source Data Fig. 5

Stress–strain curves of polymer samples and hysteresis experiment of ten cycles at a strain of 300% for terpolymer of COE, COE-hex and M2.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Si, G., Chen, C. Cyclic–acyclic monomers metathesis polymerization for the synthesis of degradable thermosets, thermoplastics and elastomers. Nat. Synth 1, 956–966 (2022). https://doi.org/10.1038/s44160-022-00163-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44160-022-00163-9

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing