Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Synthesis of cycloheptanoids through catalytic enantioselective (4 + 3)-cycloadditions of 2-aminoallyl cations with dienol silyl ethers

Abstract

Development of enantioselective cycloaddition reactions involving three-carbon units (n + 3) is challenging because of the instability of the required zwitterionic three-carbon units. The reactivity of these zwitterionic species is particularly intriguing due to the prevalence of odd-numbered carbocyclic ring motifs in natural products. Although cycloadditions with 2-oxyallyl cations are generally well developed, cycloadditions are rare with 2-aminoallyl cations, with catalytic examples limited to intramolecular reactions involving furan derivatives. Here we report a method for copper-catalysed formation of 2-aminoallyl cations from ethynyl methylene cyclic carbamates and subsequent enantioselective (4 + 3)-cycloaddition reactions between 2-aminoallyl cations and dienol silyl ethers. The seven-membered ring carbocyclic products are formed in good yields and with high enantiocontrol. The synthetic utility of the reaction products has been demonstrated through a series of reductive, cross-coupling and cyclization transformations. Mechanistic studies reveal that the reaction involves a dinuclear copper catalyst and occurs stepwise, with formation of the second C–C bond as the turnover-limiting step.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Enantioselective cycloadditions of 2-oxyallyl and 2-aminoallyl cations.
Fig. 2: Synthetic application of the reaction products.
Fig. 3: Mechanistic studies on catalytic enantioselective (4 + 3)-cycloaddition of 2-aminoallyl cations with dienol silyl ethers.

Similar content being viewed by others

Data availability

The experimental data and the characterization data for all the compounds prepared during these studies are provided in the Supplementary Information. Crystallographic data for the structures reported in this Article have been deposited at the Cambridge Crystallographic Data Centre, under deposition numbers 2141995 (3ka), 2141996 (4aa), 2175552 (6a), 2175546 (7) and 2141998 ((L2-Cu)2(BF4)2). Copies of the data can be obtained free of charge via https://www.ccdc.cam.ac.uk/structures/.

References

  1. Kobayashi, S. & Jorgensen, K. A. (eds) Cycloaddition Reactions in Organic Synthesis (Wiley, 2002).

  2. Poplata, S., Troster, A., Zou, Y.-Q. & Bach, T. Recent advances in the synthesis of cyclobutanes by olefin [2 + 2] photocycloaddition reactions. Chem. Rev. 116, 9748–9815 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Crimmins, M. T. Synthetic applications of intramolecular enone–olefin photocycloadditions. Chem. Rev. 88, 1453–1473 (1988).

    Article  CAS  Google Scholar 

  4. Sarkar, D., Bera, N. & Ghosh, S. [2 + 2] photochemical cycloaddition in organic synthesis. Eur. J. Org. Chem. 2020, 1310–1326 (2020).

    Article  CAS  Google Scholar 

  5. Kagan, H. B. & Riant, O. Catalytic asymmetric Diels–Alder reactions. Chem. Rev. 92, 1007–1019 (1992).

    Article  CAS  Google Scholar 

  6. Brieger, G. & Bennett, J. N. The intramolecular Diels–Alder reaction. Chem. Rev. 80, 63–97 (1980).

    Article  CAS  Google Scholar 

  7. Pindur, U., Lutz, G. & Otto, C. Acceleration and selectivity enhancement of Diels–Alder reactions by special and catalytic methods. Chem. Rev. 93, 741–761 (1993).

    Article  CAS  Google Scholar 

  8. Winkler, J. D. Tandem Diels–Alder cycloadditions in organic synthesis. Chem. Rev. 96, 167–176 (1996).

    Article  CAS  PubMed  Google Scholar 

  9. Nicolaou, K. C., Snyder, S. A., Montagnon, T. & Vassilikogiannakis, G. The Diels–Alder reaction in total synthesis. Angew. Chem. Int. Ed. 41, 1668–1698 (2002).

    Article  CAS  Google Scholar 

  10. Trost, B. M. & Lam, T. M. Development of diamidophosphite ligands and their application to the palladium-catalyzed vinyl-substituted trimethylenemethane asymmetric [3 + 2] cycloaddition. J. Am. Chem. Soc. 134, 11319–11321 (2012).

    Article  CAS  PubMed  Google Scholar 

  11. Trost, B. M., Morris, P. J. & Sprague, S. J. Palladium-catalyzed diastereo- and enantioselective formal [3 + 2]-cycloadditions of substituted vinylcyclopropanes. J. Am. Chem. Soc. 134, 17823–17831 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Trost, B. M., Ehmke, V., O’Keefe, B. M. & Bringley, D. A. Palladium-catalyzed dearomative trimethylenemethane cycloaddition reactions. J. Am. Chem. Soc. 136, 8213–8216 (2014).

    Article  CAS  PubMed  Google Scholar 

  13. Trost, B. M., Wang, Y. & Hung, C.-I. Use of α-trifluoromethyl carbanions for palladium-catalyzed asymmetric cycloadditions. Nat. Chem. 12, 294–301 (2020).

    Article  CAS  PubMed  Google Scholar 

  14. Cheng, Q., Xie, J.-H., Weng, Y.-C. & You, S.-L. Pd-catalyzed dearomatization of anthranils with vinylcyclopropanes by [4 + 3] cyclization reaction. Angew. Chem. Int. Ed. 58, 5739–5743 (2019).

    Article  CAS  Google Scholar 

  15. Yang, L.-C. et al. Stereoselective access to [5.5.0] and [4.4.1] bicyclic compounds through Pd-catalysed divergent higher-order cycloadditions. Nat. Chem. 12, 860–868 (2020).

    Article  CAS  PubMed  Google Scholar 

  16. Hoffmann, H. M. R. Syntheses of seven- and five-membered rings from allyl cations. Angew. Chem. Int. Ed. 12, 819–835 (1973).

    Article  Google Scholar 

  17. Noyori, R., Shimizu, F., Fukuta, K., Takaya, H. & Hayakawa, Y. Regioselectivity of the iron carbonyl promoted cyclocoupling reaction of α,α′-dibromo ketones with olefins and dienes. J. Am. Chem. Soc. 99, 5196–5198 (1977).

    Article  CAS  Google Scholar 

  18. Takaya, H., Makino, S., Hayakawa, Y. & Noyori, R. Reactions of polybromo ketones with 1,3-dienes in the presence of iron carbonyls. New 3 + 4 → 7 cyclocoupling reaction forming 4-cycloheptenones. J. Am. Chem. Soc. 100, 1765–1777 (1978).

    Article  CAS  Google Scholar 

  19. Yin, Z., He, Y. & Chiu, P. Application of (4 + 3) cycloaddition strategies in the synthesis of natural products. Chem. Soc. Rev. 47, 8881–8924 (2018).

    Article  CAS  PubMed  Google Scholar 

  20. Masuya, K., Domon, K., Tanino, K. & Kuwajima, I. Highly regio- and stereoselective [3+2] cyclopentanone annulation using a 3-(alkylthio)-2-siloxyallyl cationic species. J. Am. Chem. Soc. 120, 1724–1731 (1998).

    Article  CAS  Google Scholar 

  21. Krenske, E. H. et al. Intramolecular oxyallyl–carbonyl (3 + 2) cycloadditions. J. Am. Chem. Soc. 135, 5242–5245 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Li, H., Hughes, R. P. & Wu, J. Dearomative indole (3 + 2) cycloaddition reactions. J. Am. Chem. Soc. 136, 6288–6296 (2014).

    Article  CAS  PubMed  Google Scholar 

  23. Hoffmann, H. M. R. The cycloaddition of allyl cations to 1,3-dienes: general method for the synthesis of seven-membered carbocycles. New synthetic methods. Angew. Chem. Int. Ed. 23, 1–19 (1984).

    Article  Google Scholar 

  24. Harmata, M. Exploration of fundamental and synthetic aspects of the intramolecular 4 + 3 cycloaddition reaction. Acc. Chem. Res. 34, 595–605 (2001).

    Article  CAS  PubMed  Google Scholar 

  25. Harmata, M., Elomari, S. & Barnes, C. L. Intramolecular 4 + 3 cycloadditions. Cycloaddition reactions of cyclic alkoxyallylic and oxyallylic cations. J. Am. Chem. Soc. 118, 2860–2871 (1996).

    Article  CAS  Google Scholar 

  26. Xiong, H., Hsung, R. P., Berry, C. R. & Rameshkumar, C. The first epoxidations of 1-amidoallenes. A general entry to nitrogen-substituted oxyallyl cations in highly stereoselective [4 + 3] cycloadditions. J. Am. Chem. Soc. 123, 7174–7175 (2001).

    Article  CAS  PubMed  Google Scholar 

  27. Rameshkumar, C. & Hsung, R. P. A tandem epoxidation/stereoselective intramolecular [4 + 3] cycloaddition reaction involving nitrogen-stabilized oxyallyl cations derived from chiral allenamides. Angew. Chem. Int. Ed. 43, 615–618 (2004).

    Article  CAS  Google Scholar 

  28. Chung, W. K. et al. Inter- and intramolecular [4 + 3] cycloadditions using epoxy enol silanes as functionalized oxyallyl cation precursors. J. Am. Chem. Soc. 131, 4556–4557 (2009).

    Article  CAS  PubMed  Google Scholar 

  29. Antoline, J. E., Krenske, E. H., Lohse, A. G., Houk, K. N. & Hsung, R. P. Stereoselectivities and regioselectivities of (4 + 3) cycloadditions between allenamide-derived chiral oxazolidinone-stabilized oxyallyls and furans: experiment and theory. J. Am. Chem. Soc. 133, 14443–14451 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Lo, B., Lam, S., Wong, W.-T. & Chiu, P. Asymmetric (4 + 3) cycloadditions of enantiomerically enriched epoxy enolsilanes. Angew. Chem. Int. Ed. 51, 12120–12123 (2012).

    Article  CAS  Google Scholar 

  31. Fu, C. et al. (4+3) Cycloaddition reactions of N-alkyl oxidopyridinium ions. Angew. Chem. Int. Ed. 56, 14682–14687 (2017).

    Article  CAS  Google Scholar 

  32. Harmata, M., Ghosh, S. K., Hong, X., Wacharasindhu, S. & Kirchhoefer, P. Asymmetric organocatalysis of 4 + 3 cycloaddition reactions. J. Am. Chem. Soc. 125, 2058–2059 (2003).

    Article  CAS  PubMed  Google Scholar 

  33. Huang, J. & Hsung, R. P. Chiral Lewis acid-catalyzed highly enantioselective [4 + 3] cycloaddition reactions of nitrogen-stabilized oxyallyl cations derived from allenamides. J. Am. Chem. Soc. 127, 50–51 (2005).

    Article  CAS  PubMed  Google Scholar 

  34. Villar, L. et al. Enantioselective oxidative (4 + 3) cycloadditions between allenamides and furans through bifunctional hydrogen-bonding/ion-pairing interactions. Angew. Chem. Int. Ed. 56, 10535–10538 (2017).

    Article  CAS  Google Scholar 

  35. Banik, S. M., Levina, A., Hyde, A. M. & Jacobsen, E. N. Lewis acid enhancement by hydrogen-bond donors for asymmetric catalysis. Science 358, 761–764 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Schmid, R. & Schmid, H. Silberioneninduzierte Reaktion von 3-Chlor-2-pyrrolidinocyclohexen mit 1,3-Dienen. Helv. Chim. Acta 57, 1883–1886 (1974).

    Article  CAS  Google Scholar 

  37. Kende, A. S. & Huang, H. Asymmetric [4 + 3] cycloadditions from chiral α-chloro imines. Tetrahedron Lett. 38, 3353–3356 (1997).

    Article  CAS  Google Scholar 

  38. Lee, J. et al. Fragmentation of alkoxy radicals and oxidative elimination of alicyclic iodides. J. Org. Chem. 59, 6955–6964 (1994).

    Article  CAS  Google Scholar 

  39. Kim, H., Ziani-Cherif, C., Oh, J., Lee, D. & Cha, J. K. New [4 + 3] cycloaddition approach to cis-2,8-disubstituted oxocanes. J. Org. Chem. 60, 792–793 (1995).

    Article  CAS  Google Scholar 

  40. Prié, G. et al. A Lewis acid catalyzed intramolecular [4 + 3] cycloaddition route to polycyclic systems that contain a seven-membered ring. Angew. Chem. Int. Ed. 43, 6517–6519 (2004).

    Article  Google Scholar 

  41. Trost, B. M., Huang, Z. & Murhade, G. M. Catalytic palladium–oxyallyl cycloaddition. Science 362, 564–568 (2018).

    Article  CAS  PubMed  Google Scholar 

  42. Zou, Y., Chen, S. & Houk, K. N. Origins of selective formation of 5‑vinyl-2-methylene furans from oxyallyl/diene (3 + 2) cycloadditions with Pd(0) catalysis. J. Am. Chem. Soc. 141, 12382–12387 (2019).

    Article  CAS  PubMed  Google Scholar 

  43. Trost, B. M. & Huang, Z. Catalytic (3 + 2) palladium–aminoallyl cycloaddition with conjugated dienes. Angew. Chem. Int. Ed. 58, 6396–6499 (2019).

    Article  CAS  Google Scholar 

  44. Chai, W. et al. Lewis acid-promoted ligand-controlled regiodivergent cycloaddition of Pd-oxyallyl with 1,3-dienes: reaction development and origins of selectivities. J. Am. Chem. Soc. 143, 3595–3603 (2021).

    Article  CAS  PubMed  Google Scholar 

  45. Zheng, Y., Qin, T. & Zi, W. Enantioselective inverse electron-demand (3 + 2) cycloaddition of palladium–oxyallyl enabled by a hydrogen-bond-donating ligand. J. Am. Chem. Soc. 143, 1038–1045 (2021).

    Article  CAS  PubMed  Google Scholar 

  46. Miyake, Y., Uemura, S. & Nishibayashi, Y. Catalytic propargylic substitution reactions. ChemCatChem 1, 342–356 (2009).

    Article  CAS  Google Scholar 

  47. Roy, R. & Saha, S. Scope and advances in the catalytic propargylic substitution reaction. RSC Adv. 8, 31129–31193 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Ding, C.-H. & Hou, X.-L. Catalytic asymmetric propargylation. Chem. Rev. 111, 1914–1937 (2011).

    Article  CAS  PubMed  Google Scholar 

  49. Zhang, D.-Y. & Hu, X.-P. Recent advances in copper-catalyzed propargylic substitution. Tetrahedron Lett. 56, 283–295 (2015).

    Article  CAS  Google Scholar 

  50. Berger, K. J. et al. Direct deamination of primary amines via isodiazene intermediates. J. Am. Chem. Soc. 143, 17366–17373 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Li, R.-Z., Liu, D.-Q. & Niu, D. Asymmetric O-propargylation of secondary aliphatic alcohols. Nat. Catal. 3, 672–680 (2020).

    Article  CAS  Google Scholar 

  52. Nakajima, K., Shibata, M. & Nishibayashi, Y. Copper-catalyzed enantioselective propargylic etherifification of propargylic esters with alcohols. J. Am. Chem. Soc. 137, 2472–2475 (2015).

    Article  CAS  PubMed  Google Scholar 

  53. Hu, X.-H., Liu, Z.-T., Shao, L. & Hu, X.-P. Recent advances in catalytic stereo-controlled cycloaddition with terminal propargylic compounds. Synthesis 47, 913–923 (2015).

    Article  CAS  Google Scholar 

  54. Zhang, C. et al. Highly diastereo-/enantioselective Cu-catalyzed [3 + 3] Cycloaddition of propargyl esters with cyclic enamines toward chiral bicyclo[n.3.1] frameworks. J. Am. Chem. Soc. 134, 9585–9588 (2012).

    Article  CAS  PubMed  Google Scholar 

  55. Zhu, F.-L., Wang, Y.-H., Zhang, D.-Y., Xu, J. & Hu, X.-P. Enantioselective synthesis of highly functionalized dihydrofurans via copper-catalyzed asymmetric formal [3 + 2] cycloaddition of β-ketoesters with propargylic esters with β-keto acids. Angew. Chem. Int. Ed. 53, 10223–10227 (2014).

    Article  CAS  Google Scholar 

  56. Shao, L., Wang, Y.-H., Zhang, D.-Y., Xu, J. & Hu, X.-P. Desilylation-activated propargylic transformation: enantioselective Cu-catalyzed [3 + 2] cycloaddition of propargylic esters with β-naphthol or phenol derivatives. Angew. Chem. Int. Ed. 55, 5014–5018 (2016).

    Article  CAS  Google Scholar 

  57. Wang, Q. et al. Catalytic asymmetric [4 + 1] annulation of sulfur ylides with copper–allenylidene intermediates. J. Am. Chem. Soc. 138, 8360–8363 (2016).

    Article  CAS  PubMed  Google Scholar 

  58. Song, J., Zhang, Z.-J. & Gong, L.-Z. Asymmetric [4 + 2] annulation of C1 ammonium enolates with copper–allenylidenes. Angew. Chem. Int. Ed. 56, 5212–5216 (2017).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (numbers 21871150, 22071118 and 22188101 for W. Z.) and the Fundamental Research Funds for Central University. We thank the Haihe Laboratory of Sustainable Chemical Transformations for financial support.

Author information

Authors and Affiliations

Authors

Contributions

W.Z. conceived and supervised this work. L.S. conducted studies and prepared the Supplementary Information. Z.L. and B.G. synthesized some substrates and catalysts. All the authors co-wrote the manuscript.

Corresponding author

Correspondence to Weiwei Zi.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Synthesis thanks Pauline Chiu, Mike Shipman and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary handling editor: Thomas West, in collaboration with the Nature Synthesis team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary sections 1–10.

Supplementary Data 1

Crystallographic data for 3ka CCDC 2141995.

Supplementary Data 2

Crystallographic data for 4aa CCDC 2141996.

Supplementary Data 3

Structure factors file for compound 4aa CCDC 2141996.

Supplementary Data 4

Crystallographic data for 6a CCDC 2175552.

Supplementary Data 5

Crystallographic data for 7 CCDC 2175546.

Supplementary Data 6

Crystallographic data for (L2-Cu)2(BF4)2 CCDC 2141998.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, L., Lin, Z., Guo, B. et al. Synthesis of cycloheptanoids through catalytic enantioselective (4 + 3)-cycloadditions of 2-aminoallyl cations with dienol silyl ethers. Nat. Synth 1, 883–891 (2022). https://doi.org/10.1038/s44160-022-00150-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44160-022-00150-0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing