Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Ternary catalytic α-deuteration of carboxylic acids

Abstract

Efficient and practical construction of deuterated molecules has been a long-standing challenge. Although α-deutero carboxylic acids are ubiquitous structural components that serve as a wide array of synthons, and are thus in high demand, α-selective and mild methods for the deuteration of carboxylic acids have remained unexplored. Here we report the development of a ternary catalytic system for the α-deuteration of carboxylic acids in high yields with excellent levels of α-deuteration. The method shows wide functional group tolerance, including the late-stage deuteration of complex molecules, pharmaceuticals and natural products. Mechanistic studies and pKa calculations indicate that the reaction proceeds through the enolization of an acyl pyridinium species. The process was applied to the synthesis of a deuterated EP3 receptor antagonist, with the deutero analogue showing increased metabolic stability in human microsomes compared with the proto compound.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Utility of deuterated molecules and activation modes of carboxylic acids.
Fig. 2: Deuteration of carboxylic acid using a ternary catalyst system.
Fig. 3: Divergent transformation of deuterated products.
Fig. 4: Total synthesis of a deuterated bioactive compound and biological analysis through human microsomal metabolic assay.

Similar content being viewed by others

Data Availability

The data supporting the findings of this study are available within the article and its Supplementary Information.

References

  1. Gant, T. G. Using deuterium in drug discovery: leaving the label in the drug. J. Med. Chem. 57, 3595–3611 (2014).

    Article  CAS  PubMed  Google Scholar 

  2. Pirali, T., Serafini, M., Cargnin, S. & Genazzani, A. A. Applications of deuterium in medicinal chemistry. J. Med. Chem. 62, 5276–5297 (2019).

    Article  CAS  PubMed  Google Scholar 

  3. Li, L., Jakowski, J., Do, C. & Hong, K. Deuteration and polymers: rich history with great potential. Macromolecules 54, 3555–3584 (2021).

    Article  CAS  Google Scholar 

  4. Schoenheimer, R. & Rittenberg, D. Deuterium as an indicator in the study of intermediary metabolism. Science 82, 156–157 (1935).

    Article  CAS  PubMed  Google Scholar 

  5. De Feyter, H. M. et al. Deuterium metabolic imaging (DMI) for MRI-based 3D mapping of metabolism in vivo. Sci. Adv. 4, eaat7314 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Zhang, L. et al. Spectral tracing of deuterium for imaging glucose metabolism. Nat. Biomed. Eng. 3, 402–413 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Miyashita, M., Sasaki, M., Hattori, I., Sakai, M. & Tanino, K. Total synthesis of norzoanthamine. Science 305, 495–499 (2004).

    Article  CAS  PubMed  Google Scholar 

  8. Gómez-Gallego, M. & Sierra, M. A. Kinetic isotope effects in the study of organometallic reaction mechanisms. Chem. Rev. 111, 4857–4963 (2011).

    Article  PubMed  Google Scholar 

  9. Zuo, Z. et al. Merging photoredox with nickel catalysis: coupling of α-carboxyl sp3-carbons with aryl halides. Science 345, 437–440 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Patra, T. & Maiti, D. Decarboxylation as the key step in C–C bond-forming reactions. Chem. Eur. J. 23, 7382–7401 (2017).

    Article  CAS  PubMed  Google Scholar 

  11. Sajiki, H., Aoki, F., Esaki, H., Maegawa, T. & Hirota, K. Efficient C–H/C–D exchange reaction on the alkyl side chain of aromatic compounds using heterogeneous Pd/C in D2O. Org. Lett. 6, 1485–1487 (2004).

    Article  CAS  PubMed  Google Scholar 

  12. Esaki, H. et al. Efficient H/D exchange reactions of alkyl-substituted benzene derivatives by means of the Pd/C–H2–D2O system. Chem. Eur. J. 13, 4052–4063 (2007).

    Article  CAS  PubMed  Google Scholar 

  13. Yamada, T. et al. Mild and direct multiple deuterium-labeling of saturated fatty acids. Adv. Synth. Catal. 358, 3277–3282 (2016).

    Article  CAS  Google Scholar 

  14. Naruto, M., Agrawal, S., Toda, K. & Saito, S. Catalytic transformation of functionalized carboxylic acids using multifunctional rhenium complexes. Sci Rep. 7, 3425 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Uttry, A., Mal, S. & van Gemmeren, M. Late-stage β-C(sp3)–H deuteration of carboxylic acids. J. Am. Chem. Soc. 143, 10895–10901 (2021).

    Article  CAS  PubMed  Google Scholar 

  16. Atkinson, J. G., Csakvary, J. J., Herbert, G. T. & Stuart, R. S. Exchange reactions of carboxylic acid salts. Facile preparation of α-deuteriocarboxylic acids. J. Am. Chem. Soc. 90, 498–499 (1968).

    Article  CAS  Google Scholar 

  17. Yu, K. et al. Lithium enolates in the enantioselective construction of tetrasubstituted carbon centers with chiral lithium amides as noncovalent stereodirecting auxiliaries. J. Am. Chem. Soc. 139, 527–533 (2017).

    Article  CAS  PubMed  Google Scholar 

  18. Evans, D. A., Nelson, J. V., Vogel, E. & Taber, T. R. Stereoselective condensations via boron enolates. J. Am. Chem. Soc. 103, 3099–3111 (1981).

    Article  CAS  Google Scholar 

  19. Morita, Y., Yamamoto, T., Nagai, H., Shimizu, Y. & Kanai, M. Chemoselective boron-catalyzed nucleophilic activation of carboxylic acids for Mannich-type reactions. J. Am. Chem. Soc. 137, 7075–7078 (2015).

    Article  CAS  PubMed  Google Scholar 

  20. Kotani, S., Yoshiwara, Y., Ogasawara, M., Sugiura, M. & Nakajima, M. Catalytic enantioselective aldol reactions of unprotected carboxylic acids under phosphine oxide catalysis. Angew. Chem. Int. Ed. 57, 15877–15881 (2018).

    Article  CAS  Google Scholar 

  21. Tanaka, T., Yazaki, R. & Ohshima, T. Chemoselective catalytic α-oxidation of carboxylic acids: iron/alkali metal cooperative redox active catalysis. J. Am. Chem. Soc. 142, 4517–4524 (2020).

    Article  CAS  PubMed  Google Scholar 

  22. Perkin, W. H. XXIII.–On the hydride of aceto-salicyl. J. Chem. Soc. 21, 181–192 (1868).

    Article  Google Scholar 

  23. Dmitrevskaya, L. I. et al. New method for α-deuteration of carboxylic acids. Zh. Org. Khim. 19, 2278–2281 (1983).

    CAS  Google Scholar 

  24. Morrill, L. C. & Smith, A. D. Organocatalytic Lewis base functionalisation of carboxylic acids, esters and anhydrides via C1-ammonium or azolium enolates. Chem. Soc. Rev. 43, 6214–6226 (2014).

    Article  CAS  PubMed  Google Scholar 

  25. Steglich, W. & Höfle, G. N,N‐Dimethyl‐4‐pyridinamine, a very effective acylation catalyst. Angew. Chem. Int. Ed. 8, 981–981 (1969).

    Article  CAS  Google Scholar 

  26. Chang, Y. et al. Catalytic deuterium incorporation within metabolically stable β-amino C–H bonds of drug molecules. J. Am. Chem. Soc. 141, 14570–14575 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Berthelette, C. & Scheigetz, J. Base-catalyzed deuterium and tritium labelling of 1-biphenyl-4-ylpropane-1,2-dione and deuteration of aryl methyl ketones. J. Labelled Comp. Radiopharm. 47, 891–894 (2004).

    Article  CAS  Google Scholar 

  28. Zhan, M., Zhang, T., Huang, H., Xie, Y. & Chen, Y. A simple method for α-Position deuterated carbonyl compounds with pyrrolidine as catalyst. J. Labelled Comp. Radiopharm. 57, 533–539 (2014).

    Article  CAS  PubMed  Google Scholar 

  29. Chang, Y., Myers, T. & Wasa, M. B(C6F5)3-catalyzed α-deuteration of bioactive carbonyl compounds with D2O. Adv. Synth. Catal. 362, 360–364 (2020).

    Article  CAS  PubMed  Google Scholar 

  30. Yang, C., Xue, X. S., Jin, J. L., Li, X. & Cheng, J. P. Theoretical study on the acidities of chiral phosphoric acids in dimethyl sulfoxide: hints for organocatalysis. J. Org. Chem. 78, 7076–7085 (2013).

    Article  CAS  PubMed  Google Scholar 

  31. Zhang, Z., Zheng, Y., Xiao-Song, X. & Pengju, J. A systematic theoretical study on the acidities for cations of ionic liquids in dimethyl sulfoxide. J. Phys. Chem. A 122, 5750–5755 (2018).

    Article  Google Scholar 

  32. Huihui, K. M. M. et al. Decarboxylative cross-electrophile coupling of N-hydroxyphthalimide esters with aryl iodides. J. Am. Chem. Soc. 138, 5016–5019 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Fawcett, A. et al. Photoinduced decarboxylative borylation of carboxylic acids. Science 357, 283–286 (2017).

    Article  CAS  PubMed  Google Scholar 

  34. Fu, M. C., Shang, R., Zhao, B., Wang, B. & Fu, Y. Photocatalytic decarboxylative alkylations mediated by triphenylphosphine and sodium iodide. Science 363, 1429–1434 (2019).

    Article  CAS  PubMed  Google Scholar 

  35. Patra, T., Mukherjee, S., Ma, J., Strieth‐Kalthoff, F. & Glorius, F. Visible‐light‐photosensitized aryl and alkyl decarboxylative functionalization reactions. Angew. Chem. Int. Ed. 131, 10624–10630 (2019).

    Article  Google Scholar 

  36. Li, N. et al. A highly selective decarboxylative deuteration of carboxylic acids. Chem. Sci. 12, 5505–5510 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Asada, M. et al. 3-(2-Aminocarbonylphenyl)propanoic acid analogs as potent and selective EP3 receptor antagonists. Part 1: discovery and exploration of the carboxyamide side chain. Bioorg. Med. Chem. 18, 80–90 (2010).

    Article  CAS  PubMed  Google Scholar 

  38. Kawajiri, T. et al. Chemoselective nucleophilic functionalizations of aromatic aldehydes and acetals via pyridinium salt intermediates. J. Org. Chem. 84, 3853–3870 (2019).

    Article  CAS  PubMed  Google Scholar 

  39. Farizyan, M., Mondal, A., Mal, S., Deufel, F. & Van Gemmeren, M. Palladium-catalyzed nondirected late-stage C–H deuteration of arenes. J. Am. Chem. Soc. 143, 16370–16376 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kopf, S. et al. Recent developments for the deuterium and tritium labeling of organic molecules. Chem. Rev. 122, 6634–6718 (2022).

    Article  CAS  PubMed  Google Scholar 

  41. Takahashi, M., Oshima, K. & Matsubara, S. Ruthenium catalyzed deuterium labelling of α-carbon in primary alcohol and primary/secondary amine in D2O. Chem. Lett. 34, 192–193 (2005).

    Article  CAS  Google Scholar 

  42. Neubert, L. et al. Ruthenium-catalyzed selective α,β-deuteration of bioactive amines. J. Am. Chem. Soc. 134, 12239–12244 (2012).

    Article  CAS  PubMed  Google Scholar 

  43. Loh, Y. Y. et al. Photoredoxcatalyzed deuteration and tritiation of pharmaceutical compounds. Science 358, 1182–1187 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was financially supported by MEXT KAKENHI grant numbers JP21A204, JP21H05207 and JP21H05208 for The Grant-in-Aid for Transformative Research Areas (A) Digitalization-driven Transformative Organic Synthesis (Digi-TOS) from MEXT, JSPS KAKENHI grant no. JP15H05846 in Middle Molecular Strategy, no. JP18H04263 in Precisely Designed Catalysts with Customized Scaffolding, a Grant-in-Aid for Scientific Research (B) (no. JP17H03972 and no. JP21H02607), a Grant-in-Aid for Challenging Research (Exploratory) (no. JP19K22501) from JSPS, Basis for Supporting Innovative Drug Discovery and Life Science Research (BINDS) (no. JP20am0101091 and no. JP22ama121031) and no. JP21ak0101167 from AMED. T.T. thanks the JSPS for a predoctoral fellowship. R.Y. thanks the Qdai-jump Research Program, the Ube Industries Foundation, the Amano Institute of Technology, the ENEOS Tonengeneral Research/Development Encouragement & Scholarship Foundation, the Takeda Science Foundation, the Noguchi Institute and the Astellas Foundation for Research on Metabolic Disorders for financial support. We are grateful to H. Morimoto at Kyushu University for fruitful discussions about the density functional theory calculations.

Author information

Authors and Affiliations

Authors

Contributions

T.T., R.Y. and T.O. conceived the work, analysed the data and discussed the results, and all of the authors co-wrote the manuscript. T.T. designed and carried out the experiments with Y.K. and Y.H. The human microsomal metabolic assay was performed by A.T.

Corresponding authors

Correspondence to R. Yazaki or T. Ohshima.

Ethics declarations

Competing interests

A provisional patent application for part of this work has been filed (Kyushu University, application number 2021-147127).

Peer review

Peer review information

Nature Synthesis thanks Jin Xie and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editor: Thomas West, in collaboration with the Nature Synthesis team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tanaka, T., Koga, Y., Honda, Y. et al. Ternary catalytic α-deuteration of carboxylic acids. Nat. Synth 1, 824–830 (2022). https://doi.org/10.1038/s44160-022-00139-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44160-022-00139-9

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing