Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Design of soft matter for additive processing

Abstract

Digital assembly via extrusion-based additive manufacturing, or three-dimensional (3D) printing, grants the opportunity to attain exquisite control over material structure and composition at the local (‘voxel’) level. The synthetic incorporation of a diverse array of chemistries into 3D-printed soft materials has expanded its use into many application areas. However, substantial opportunity exists for synthesizing materials in which the functional microstructure (at both filler and molecular levels) interacts with the processing flows of extrusion-based manufacturing to achieve unique and enhanced properties. Here we articulate principles for designing and synthesizing soft materials with the potential to generate printed structures with superlative mechanical and stimuli-responsive properties. Specifically, we consider the rheological requirements of printing via direct ink writing and materials extrusion, and examine materials that show printing-directed alignment or trapping of tailored non-equilibrium structures. Finally, we discuss characterization approaches that connect filament-level microstructure with macroscopic behaviour, thus ‘closing the loop’ of material development. Collectively, these create the potential for additive manufacturing to achieve voxel-level control of composition, microstructure and properties.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The design process to digital assembly by using extrusion-based additive processing.
Fig. 2: Designing yield stress interactions within the printing process.
Fig. 3: Imparting functionality during the printing process.
Fig. 4: Controlling the functionality of 3D-printed material via external fields.
Fig. 5: Characterization methods used in 3D printing for structural analysis at different length scales, from the molecular to the macroscopic scale.

Similar content being viewed by others

References

  1. Wong, B. H. Invisalign A to Z. Am. J. Orthod. Dentofacial Orthop. 121, 540–541 (2002).

    Article  PubMed  Google Scholar 

  2. Najmon, J. C., Raeisi, S. & Tovar, A. in Additive Manufacturing for the Aerospace Industry (eds Froes, F. & Boyer, R.) 7–31 (Elsevier, 2019).

  3. Hosny, A. et al. From improved diagnostics to presurgical planning: high-resolution functionally graded multimaterial 3D printing of biomedical tomographic data sets. 3D Print. Addit. Manuf. 5, 103–113 (2018).

    Article  Google Scholar 

  4. Nelson, A. Z. et al. Designing and transforming yield-stress fluids. Curr. Opin. Solid State Mater. Sci. 23, 100758 (2019).

    Article  CAS  Google Scholar 

  5. Park, K. S. et al. Tuning conformation, assembly and charge transport properties of conjugated polymers by printing flow. Sci. Adv. 5, eaaw7757 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Patel, B. B. et al. Tunable structural color of bottlebrush block copolymers through direct-write 3D printing from solution. Sci. Adv. 6, eaaz7202 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Truby, R. L. & Lewis, J. A. Printing soft matter in three dimensions. Nature 540, 371–378 (2016).

    Article  CAS  PubMed  Google Scholar 

  8. Mackay, M. E. The importance of rheological behavior in the additive manufacturing technique material extrusion. J. Rheol. 62, 1549–1561 (2018).

    Article  CAS  Google Scholar 

  9. Zhu, J. Z., Zhang, Q., Yang, T. Q., Liu, Y. & Liu, R. 3D printing of multi-scalable structures via high penetration near-infrared photopolymerization. Nat. Commun. 11, 3462 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. McIlroy, C. & Olmsted, P. D. Disentanglement effects on welding behaviour of polymer melts during the fused-filament-fabrication method for additive manufacturing. Polymer 123, 376–391 (2017).

    Article  CAS  Google Scholar 

  11. Levenhagen, N. P. & Dadmun, M. D. Interlayer diffusion of surface segregating additives to improve the isotropy of fused deposition modeling products. Polymer 152, 35–41 (2018).

    Article  CAS  Google Scholar 

  12. Smay, J. E., Gratson, G. M., Shepherd, R. F., Cesarano, J. & Lewis, J. A. Directed colloidal assembly of 3D periodic structures. Adv. Mater. 14, 1279–1283 (2002).

    Article  CAS  Google Scholar 

  13. Smay, J. E., Cesarano, J. & Lewis, J. A. Colloidal inks for directed assembly of 3-D periodic structures. Langmuir 18, 5429–5437 (2002).

    Article  CAS  Google Scholar 

  14. Trigg, E. B. et al. Revealing filler morphology in 3D-printed thermoset nanocomposites by scanning microbeam X-ray scattering. Addit. Manuf. 37, 101729 (2021).

    CAS  Google Scholar 

  15. Hausmann, M. K. et al. Dynamics of cellulose nanocrystal alignment during 3D printing. ACS Nano 12, 6926–6937 (2018).

    Article  CAS  PubMed  Google Scholar 

  16. Wang, C., Rubakhin, S. S., Enright, M. J., Sweedler, J. V. & Nuzzo, R. G. 3D particle-free printing of biocompatible conductive hydrogel platforms for neuron growth and electrophysiological recording. Adv. Funct. Mater. 31, 2010246 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Rauzan, B. M., Nelson, A. Z., Lehman, S. E., Ewoldt, R. H. & Nuzzo, R. G. Particle-free emulsions for 3D printing elastomers. Adv. Funct. Mater. 28, 1707032 (2018).

    Article  CAS  Google Scholar 

  18. Xie, R. et al. Room temperature 3D printing of super-soft and solvent-free elastomers. Sci. Adv. 6, eabc6900 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Olsen, B. D., Kornfield, J. A. & Tirrell, D. A. Yielding behavior in injectable hydrogels from telechelic proteins. Macromolecules 43, 9094–9099 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Highley, C. B., Rodell, C. B. & Burdick, J. A. Direct 3D printing of shear-thinning hydrogels into self-healing hydrogels. Adv. Mater. 27, 5075–5079 (2015).

    Article  CAS  PubMed  Google Scholar 

  21. Sather, N. A. et al. 3D printing of supramolecular polymer hydrogels with hierarchical structure. Small 17, 2005743 (2021).

    Article  CAS  Google Scholar 

  22. Lee, S. C., Gillispie, G., Prim, P. & Lee, S. J. Physical and chemical factors influencing the printability of hydrogel-based extrusion bioinks. Chem. Rev. 120, 10797–10849 (2020).

    Google Scholar 

  23. Ouyang, L., Highley, C. B., Rodell, C. B., Sun, W. & Burdick, J. A. 3D printing of shear-thinning hyaluronic acid hydrogels with secondary cross-linking. ACS Biomater. Sci. Eng. 2, 1743–1751 (2016).

    Article  CAS  PubMed  Google Scholar 

  24. Nadgorny, M., Collins, J., Xiao, Z., Scales, P. J. & Connal, L. A. 3D-printing of dynamic self-healing cryogels with tuneable properties. Polym. Chem. 9, 1684–1692 (2018).

    Article  CAS  Google Scholar 

  25. Cai, L., Dewi, R. E. & Heilshorn, S. C. Injectable hydrogels with in situ double network formation enhance retention of transplanted stem cells. Adv. Funct. Mater. 25, 1344–1351 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Zhang, M. et al. Hierarchical-coassembly-enabled 3D-printing of homogeneous and heterogeneous covalent organic frameworks. J. Am. Chem. Soc. 141, 5154–5158 (2019).

    Article  CAS  PubMed  Google Scholar 

  27. Kolesky, D. B. et al. 3D bioprinting of vascularized, heterogeneous cell-laden tissue constructs. Adv. Mater. 26, 3124–3130 (2014).

    Article  CAS  PubMed  Google Scholar 

  28. Zhang, M. S. et al. Dual-responsive hydrogels for direct-write 3D printing. Macromolecules 48, 6482–6488 (2015).

    Article  CAS  Google Scholar 

  29. Newby, G. E., Hamley, I. W., King, S. M., Martin, C. M. & Terrill, N. J. Structure, rheology and shear alignment of pluronic block copolymer mixtures. J. Colloid Interface Sci. 329, 54–61 (2009).

    Article  CAS  PubMed  Google Scholar 

  30. Sebastian, J. M., Lai, C., Graessley, W. W. & Register, R. A. Steady-shear rheology of block copolymer melts and concentrated solutions: disordering stress in body-centered-cubic systems. Macromolecules 35, 2707–2713 (2002).

    Article  CAS  Google Scholar 

  31. Xie, R. et al. Yielding behavior of bottlebrush and linear block copolymers. Macromolecules 54, 5636–5647 (2021).

    Article  CAS  Google Scholar 

  32. Fratzl, P. & Weinkamer, R. Nature’s hierarchical materials. Prog. Mater. Sci. 52, 1263–1334 (2007).

    Article  CAS  Google Scholar 

  33. Wagner, N. J. & Mewis, J. in Theory and Applications of Colloidal Suspension Rheology Cambridge Series in Chemical Engineering (eds Mewis, J. & Wagner, N. J.) 1–43 (Cambridge Univ. Press, 2021).

  34. Baek, S. G., Magda, J. J. & Larson, R. G. Rheological differences among liquid‐crystalline polymers. I. The first and second normal stress differences of PBG solutions. J. Rheol. 37, 1201–1224 (1993).

    Article  CAS  Google Scholar 

  35. Compton, B. G. & Lewis, J. A. 3D-printing of lightweight cellular composites. Adv. Mater. 26, 5930–5935 (2014).

    Article  CAS  PubMed  Google Scholar 

  36. Frka-Petesic, B. & Vignolini, S. So much more than paper. Nat. Photon. 13, 365–367 (2019).

    Article  CAS  Google Scholar 

  37. Siqueira, G. et al. Cellulose nanocrystal inks for 3D printing of textured cellular architectures. Adv. Funct. Mater. 27, 1604619 (2017).

    Article  CAS  Google Scholar 

  38. Sydney Gladman, A., Matsumoto, E. A., Nuzzo, R. G., Mahadevan, L. & Lewis, J. A. Biomimetic 4D printing. Nat. Mater. 15, 413–418 (2016).

    Article  CAS  PubMed  Google Scholar 

  39. Raney, J. R. et al. Rotational 3D printing of damage-tolerant composites with programmable mechanics. Proc. Natl Acad. Sci. USA 115, 1198–1203 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Zhang, Q., Yan, D., Zhang, K. & Hu, G. Pattern transformation of heat-shrinkable polymer by three-dimensional (3D) printing technique. Sci. Rep. 5, 8936 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Gantenbein, S. et al. Three-dimensional printing of hierarchical liquid–crystal–polymer structures. Nature 561, 226–230 (2018).

    Article  CAS  PubMed  Google Scholar 

  42. Sol, J. A. H. P. et al. Anisotropic iridescence and polarization patterns in a direct ink written chiral photonic polymer. Adv. Mater. 33, 2103309 (2021).

    Article  CAS  Google Scholar 

  43. Zhou, N. et al. Perovskite nanowire-block copolymer composites with digitally programmable polarization anisotropy. Sci. Adv. 5, eaav8141 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Valentine, C. S., Jayaraman, A., Mahanthappa, M. K. & Walker, L. M. Shear-modulated rates of phase transitions in sphere-forming diblock oligomer lyotropic liquid crystals. ACS Macro Lett. 10, 538–544 (2021).

    Article  CAS  PubMed  Google Scholar 

  45. Jiang, H. Y., Kelch, S. & Lendlein, A. Polymers move in response to light. Adv. Mater. 18, 1471–1475 (2006).

    Article  CAS  Google Scholar 

  46. Li, J., Nagamani, C. & Moore, J. S. Polymer mechanochemistry: from destructive to productive. Acc. Chem. Res. 48, 2181–2190 (2015).

    Article  CAS  PubMed  Google Scholar 

  47. Epstein, E., Kim, T. A., Kollarigowda, R. H., Sottos, N. R. & Braun, P. V. Force-modulated equilibria of mechanophore-metal coordinate bonds. Chem. Mater. 32, 3869–3878 (2020).

    Article  CAS  Google Scholar 

  48. Park, T. J. et al. Electrically tunable soft-solid block copolymer structural color. ACS Nano 9, 12158–12167 (2015).

    Article  CAS  PubMed  Google Scholar 

  49. Kocak, G., Tuncer, C. & Bütün, V. pH-responsive polymers. Polym. Chem. 8, 144–176 (2017).

    Article  CAS  Google Scholar 

  50. Kramer, J. R. & Deming, T. J. Glycopolypeptides with a redox-triggered helix-to-coil transition. J. Am. Chem. Soc. 134, 4112–4115 (2012).

    Article  CAS  PubMed  Google Scholar 

  51. Liu, R., Fraylich, M. & Saunders, B. R. Thermoresponsive copolymers: from fundamental studies to applications. Colloid. Polym. Sci. 287, 627–643 (2009).

    Article  CAS  Google Scholar 

  52. Lancia, F., Ryabchun, A. & Katsonis, N. Life-like motion driven by artificial molecular machines. Nat. Rev. Chem. 3, 536–551 (2019).

    Article  CAS  Google Scholar 

  53. Kim, Y., Yuk, H., Zhao, R., Chester, S. A. & Zhao, X. Printing ferromagnetic domains for untethered fast-transforming soft materials. Nature 558, 274–279 (2018).

    Article  CAS  PubMed  Google Scholar 

  54. Kotikian, A., Truby, R. L., Boley, J. W., White, T. J. & Lewis, J. A. 3D printing of liquid crystal elastomeric actuators with spatially programed nematic order. Adv. Mater. 30, 1706164 (2018).

    Article  CAS  Google Scholar 

  55. Ambulo, C. P. et al. Four-dimensional printing of liquid crystal elastomers. ACS Appl. Mater. Interfaces 9, 37332–37339 (2017).

    Article  CAS  PubMed  Google Scholar 

  56. López-Valdeolivas, M., Liu, D., Broer, D. J. & Sánchez-Somolinos, C. 4D printed actuators with soft-robotic functions. Macromol. Rapid Commun. 39, 1700710 (2018).

    Article  CAS  Google Scholar 

  57. Davidson, E. C., Kotikian, A., Li, S., Aizenberg, J. & Lewis, J. A. 3D printable and reconfigurable liquid crystal elastomers with light-induced shape memory via dynamic bond exchange. Adv. Mater. 32, 1905682 (2020).

    Article  CAS  Google Scholar 

  58. Coasey, K., Hart, K. R., Wetzel, E., Edwards, D. & Mackay, M. E. Nonisothermal welding in fused filament fabrication. Addit. Manuf. 33, 101140 (2020).

    CAS  Google Scholar 

  59. Hart, K. R. et al. Increased fracture toughness of additively manufactured amorphous thermoplastics via thermal annealing. Polymer 144, 192–204 (2018).

    Article  CAS  Google Scholar 

  60. Frutiger, A. et al. Capacitive soft strain sensors via multicore-shell fiber printing. Adv. Mater. 27, 2440–2446 (2015).

    Article  CAS  PubMed  Google Scholar 

  61. Mueller, J., Raney, J. R., Shea, K. & Lewis, J. A. Architected lattices with high stiffness and toughness via multicore-shell 3D printing. Adv. Mater. 30, 1705001 (2018).

    Article  CAS  Google Scholar 

  62. Kotikian, A. et al. Innervated, self-sensing liquid crystal elastomer actuators with closed loop control. Adv. Mater. 33, 2101814 (2021).

    Article  CAS  Google Scholar 

  63. Chortos, A. et al. Printing reconfigurable bundles of dielectric elastomer fibers. Adv. Funct. Mater. 31, 2010643 (2021).

    Article  CAS  Google Scholar 

  64. Boley, J. W. et al. Shape-shifting structured lattices via multimaterial 4D printing. Proc. Natl Acad. Sci. USA 116, 20856–20862 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Wang, Z. et al. Stretchable materials of high toughness and low hysteresis. Proc. Natl Acad. Sci. USA 116, 5967–5972 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Hassan, N. M., Migler, K. B., Hight Walker, A. R., Kotula, A. P. & Seppala, J. E. Comparing polarized Raman spectroscopy and birefringence as probes of molecular scale alignment in 3D printed thermoplastics. MRS Commun. 11, 157–167 (2021).

    Article  CAS  Google Scholar 

  67. Northcutt, L. A., Orski, S. V., Migler, K. B. & Kotula, A. P. Effect of processing conditions on crystallization kinetics during materials extrusion additive manufacturing. Polymer 154, 182–187 (2018).

    Article  CAS  Google Scholar 

  68. Collins, B. A. et al. Polarized X-ray scattering reveals non-crystalline orientational ordering in organic films. Nat. Mater. 11, 536–543 (2012).

    Article  CAS  PubMed  Google Scholar 

  69. Prévôt, M. E. et al. Synchrotron microbeam diffraction studies on the alignment within 3D-printed smectic-A liquid crystal elastomer filaments during extrusion. Crystals 11, 523 (2021).

    Article  CAS  Google Scholar 

  70. Shmueli, Y. et al. In situ time-resolved X-ray scattering study of isotactic polypropylene in additive manufacturing. ACS Appl. Mater. Interfaces 11, 37112–37120 (2019).

    Article  CAS  PubMed  Google Scholar 

  71. Corona, P. T. et al. Bayesian estimations of orientation distribution functions from small-angle scattering enable direct prediction of mechanical stress in anisotropic materials. Phys. Rev. Mater. 5, 065601 (2021).

    Article  CAS  Google Scholar 

  72. Visser, C. W., Amato, D. N., Mueller, J. & Lewis, J. A. Architected polymer foams via direct bubble writing. Adv. Mater. 31, 1904668 (2019).

    Article  CAS  Google Scholar 

  73. Fu, Q., Saiz, E. & Tomsia, A. P. Direct ink writing of highly porous and strong glass scaffolds for load-bearing bone defects repair and regeneration. Acta Biomater. 7, 3547–3554 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Yavitt, B. M. et al. Revealing nanoscale dynamics during an epoxy curing reaction with X-ray photon correlation spectroscopy. J. Appl. Phys. 127, 114701 (2020).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank J. A. Lewis for helpful discussions. This work was partially supported by the MRSEC programme of the National Science Foundation (DMR-2011750) through the Princeton Center for Complex Materials. J.M.T. acknowledges support from an ARO MURI award (no. W911NF-17-1-0351).

Author information

Authors and Affiliations

Authors

Contributions

This perspective was conceived by E.C.D., and written by C.L.C.C., E.C.D. and J.M.T.

Corresponding author

Correspondence to Emily Catherine Davidson.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Synthesis thanks the anonymous reviewers for their contribution to the peer review of this work. Primary Handling Editor: Alison Stoddart, in collaboration with the Nature Synthesis team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chan, C.L.C., Taylor, J.M. & Davidson, E.C. Design of soft matter for additive processing. Nat. Synth 1, 592–600 (2022). https://doi.org/10.1038/s44160-022-00115-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44160-022-00115-3

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing